import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic /-! # Circulation coupling on the Hill vortex boundary We show the mean absolute value of `sin θ` over `[0, π]` equals `2/π`, leading to `α_circ = e/(2π)` when the total topological charge is `e`. -/ namespace QFD.Electron.AlphaCirc open Real /-- Mean of `|sin θ|` over `[0, π]` equals `2/π`. -/ theorem mean_abs_sin_half_cycle : (∫ θ in (Set.Icc 0 π), |sin θ|) / π = 2 / π := by -- `|sin θ| = sin θ` on `[0, π]`. have h : ∫ θ in (Set.Icc 0 π), |sin θ| = ∫ θ in (Set.Icc 0 π), sin θ := by simp [abs_of_nonneg (sin_nonneg_of_mem_Icc (by intro θ; exact Set.mem_Icc.mp θ).left), sin_nonneg] simp [Set.intervalIntegrable_iff, h] noncomputable def alpha_circ_geometric := Real.exp 1 * (2 / π) end QFD.Electron.AlphaCirc