import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Data.Real.Basic import QFD.Electron.HillVortex noncomputable section namespace QFD.Electron open Real InnerProductSpace /-! # Gate C-L5: Axis Alignment (The Singular Attribute) This file formalizes the unique geometric property of the Hill Spherical Vortex: The Axis of Linear Momentum (Propagation) and the Axis of Angular Momentum (Spin) are **Collinear**. Physical Significance: - "Smoke Ring" / Toroid: P ⟂ L (Momentum normal to ring, Spin along ring axis? No, spin is around ring). Actually for a smoke ring, P is along symmetry axis, L is zero total (azimuthal symmetry) or distributed toroidally. - "Spinning Bullet" / Hill Vortex: The vortex moves along Z, and the internal circulation is symmetric about Z, but the *intrinsic spin* usually typically aligns with the propagation in spinor models. Wait - for a classical Hill Vortex (axisymmetric): - Propagation P is along Z. - Vorticity ω is azimuthal (around the ring core). - Total Angular Momentum L of the fluid might be zero if purely axisymmetric without swirl. **QFD Specifics (Chapter 7 Sidebar)**: The QFD Electron is a "Swirling" Hill Vortex. It has: 1. Poloidal circulation (Standard Hill) -> Defines the soliton shape. 2. Toroidal/Azimuthal swirl (The "Spin") -> Adds non-zero L_z. We model this state and prove that if P is along Z and the Swirl is about Z, then P and L are parallel. -/ variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] /-- The Kinematic State of the Vortex. Defined by its linear velocity vector and its angular momentum vector. -/ structure VortexKinematics (E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] where velocity : E -- Linear Velocity (Proportional to Momentum P) angular_momentum : E -- Total Spin Vector L /-- Collinearity Predicate. Two vectors are collinear if one is a scalar multiple of the other. u = c • v OR v = c • u -/ def AreCollinear (u v : E) : Prop := ∃ (c : ℝ), u = c • v ∨ v = c • u /-- **Theorem C-L5**: Axis Alignment. Hypothesis: 1. The Vortex propagates along the Z-axis (velocity = v * k). 2. The Vortex has "Swirl" symmetry about the Z-axis (angular_momentum = ω * k). Conclusion: The Velocity and Angular Momentum vectors are collinear. This is "The Singular Attribute" distinguishing the electron geometry. -/ theorem axis_alignment_check (z_axis : E) (hz : z_axis ≠ 0) (v_mag : ℝ) (omega_mag : ℝ) -- The physical setup: (kin : VortexKinematics E) (h_vel : kin.velocity = v_mag • z_axis) (h_spin : kin.angular_momentum = omega_mag • z_axis) : -- The Result: AreCollinear kin.velocity kin.angular_momentum := by -- Proof: unfold AreCollinear -- Case 1: If velocity is zero, they are collinear (0 = 0 * L) by_cases hv : v_mag = 0 · use 0 left rw [hv, zero_smul] at h_vel rw [h_vel, zero_smul] -- Case 2: If velocity is non-zero · -- We can express Spin as (omega/v) * Velocity use (omega_mag / v_mag) right rw [h_spin, h_vel, smul_smul] -- (ω/v) * v = ω field_simp [hv] end QFD.Electron