import Mathlib.Data.Real.Basic import Mathlib.Algebra.Order.Ring.Basic import Mathlib.Tactic noncomputable section namespace QFD.Empirical open Real /-! # Gate C-2: The Core Compression Law (CCL) This file formalizes the "Backbone" of the nuclear chart derived in the uploaded "Universal Nuclear Scaling" papers [McSheery 2025]. Unlike the Semi-Empirical Mass Formula (which sums volume/surface/Coulomb terms), QFD models the nucleus as an elastic soliton minimizing geometric stress. ## The Physical Model 1. **Backbone**: The ideal charge Q* for mass A is defined by competing geometric capacities: Q*(A) = c₁ A^(2/3) + c₂ A (c₁ ≈ Surface Flux, c₂ ≈ Volume Compression) 2. **Strain Energy**: Isotopes off this backbone experience an elastic restoring force: E(Q) = ½ k (Q - Q*)^2 3. **Stability**: Decay (Beta/Alpha) is the process of minimizing this strain. -/ variable (A : ℝ) (hA : 0 < A) /-! ## 1. The Geometric Backbone -/ /-- The "Zero Stress" charge trajectory. Matches the functional form Q = c₁A^(2/3) + c₂A from the NuBase 2020 analysis. -/ def backbone_charge (c₁ c₂ : ℝ) : ℝ := c₁ * (A ^ (2 / 3 : ℝ)) + c₂ * A /-! ## 2. The Elastic Energy Functional -/ /-- The Effective Potential Energy of a nucleus with mass A and charge Q. This corresponds to the "Charge Stress" in the provided papers. -/ def deformation_energy (c₁ c₂ k : ℝ) (Q : ℝ) : ℝ := 0.5 * k * (Q - backbone_charge A c₁ c₂)^2 /-! ## 3. Stability Theorems -/ /-- **Theorem CCL-1a**: The backbone minimizes deformation energy. -/ theorem backbone_minimizes_energy (c₁ c₂ k : ℝ) (hk : 0 < k) (Q : ℝ) : deformation_energy A c₁ c₂ k (backbone_charge A c₁ c₂) ≤ deformation_energy A c₁ c₂ k Q := by unfold deformation_energy have h_zero : 0.5 * k * (backbone_charge A c₁ c₂ - backbone_charge A c₁ c₂)^2 = 0 := by ring rw [h_zero] apply mul_nonneg · linarith · exact pow_two_nonneg _ /-- **Theorem CCL-1b**: The backbone is the unique minimizer. -/ theorem backbone_unique_minimizer (c₁ c₂ k : ℝ) (hk : 0 < k) (Q : ℝ) (h_min : deformation_energy A c₁ c₂ k Q = 0) : Q = backbone_charge A c₁ c₂ := by unfold deformation_energy at h_min have : (Q - backbone_charge A c₁ c₂)^2 = 0 := by nlinarith have : Q - backbone_charge A c₁ c₂ = 0 := eq_zero_of_pow_eq_zero this linarith /-! ## 4. Decay Dynamics (The Gradient) -/ /-- **Theorem CCL-2**: Beta Decay Gradient ("Rolling Down the Hill"). If a nucleus is "Overcharged" (Q > Q*), reducing charge (Q - δ) strictly reduces Energy. This formally predicts the β+ / Electron Capture decay channel. -/ theorem beta_decay_favorable (c₁ c₂ k : ℝ) (hk : 0 < k) (Q : ℝ) (_h_excess : Q > backbone_charge A c₁ c₂) -- "Overcharged" condition (delta : ℝ) (h_delta_pos : 0 < delta) -- Small decay step (h_small_step : delta < Q - backbone_charge A c₁ c₂) : -- Step doesn't overshoot deformation_energy A c₁ c₂ k (Q - delta) < deformation_energy A c₁ c₂ k Q := by unfold deformation_energy let target := backbone_charge A c₁ c₂ -- We need to show: 0.5*k*(Q - δ - target)^2 < 0.5*k*(Q - target)^2 -- Since 0.5*k > 0, we just need to compare the squares. have h_factor_pos : 0 < 0.5 * k := by linarith apply mul_lt_mul_of_pos_left _ h_factor_pos -- We compare x_new^2 < x_old^2 -- Let x_old = Q - target -- Let x_new = Q - delta - target apply sq_lt_sq' · -- Need: -(Q - target) < Q - delta - target linarith · -- Need: Q - delta - target < Q - target linarith end QFD.Empirical