import QFD.GA.Cl33 import Mathlib.Algebra.CharZero.Defs /-! # Basis Operations for Cl(3,3) This module centralizes common Clifford algebra operations on the Cl(3,3) basis, reducing duplication across PoyntingTheorem, RealDiracEquation, SchrodingerEvolution, etc. ## Exports * `e i` - simplified basis vector access * `basis_sq` - lemma that eᵢ² = ±1 * `basis_anticomm` - lemma that eᵢeⱼ = -eⱼeᵢ for i ≠ j * CharZero and Nontrivial instances for contradiction proofs -/ namespace QFD.GA open CliffordAlgebra /-- Simplified accessor for Clifford basis vectors -/ def e (i : Fin 6) : Cl33 := ι33 (basis_vector i) /-- Lemma: basis vectors square to their signature (±1) -/ theorem basis_sq (i : Fin 6) : e i * e i = algebraMap ℝ Cl33 (signature33 i) := by dsimp [e] exact generator_squares_to_signature i /-- Lemma: distinct basis vectors anticommute -/ theorem basis_anticomm {i j : Fin 6} (h : i ≠ j) : e i * e j = - e j * e i := by dsimp [e] have h_anti := generators_anticommute i j h have := add_eq_zero_iff_eq_neg.mp h_anti rw [← neg_mul] at this exact this end QFD.GA