import Mathlib.LinearAlgebra.CliffordAlgebra.Basic import Mathlib.LinearAlgebra.QuadraticForm.Basic import Mathlib.Data.Fin.Basic import Mathlib.Data.Fintype.BigOperators import Mathlib.Data.Real.Basic import Mathlib.Tactic noncomputable section namespace QFD.GA open CliffordAlgebra open scoped BigOperators -- # Clifford Algebra Cl(3,3) - Eliminating EmergentAlgebra Axiom -- This file formalizes the Clifford algebra Cl(3,3) with signature (+,+,+,-,-,-) -- using Mathlib's `CliffordAlgebra` structure. -- ## Purpose -- Eliminates the axiom `generator_square` from EmergentAlgebra.lean by proving -- that basis generators square to their metric signature: -- eᵢ² = ηᵢᵢ -- using Mathlib's `CliffordAlgebra.ι_sq_scalar` as the anchor lemma. -- ## The Quadratic Form -- For 6D phase space with signature (3,3): -- - Q(e₁) = +1, Q(e₂) = +1, Q(e₃) = +1 (spacelike) -- - Q(e₄) = -1, Q(e₅) = -1, Q(e₆) = -1 (timelike) -- The Clifford algebra Cl(Q) is defined by the relation: -- v · w + w · v = 2Q(v,w) · 1 -- For basis vectors: -- eᵢ · eᵢ = Q(eᵢ) · 1 -- ## Strategy -- 1. Define the quadratic form Q₃₃ : (Fin 6 → ℝ) → ℝ -- 2. Use Mathlib's CliffordAlgebra Q₃₃ -- 3. Use the canonical generator ι : V → CliffordAlgebra Q₃₃ -- 4. Prove: ι(eᵢ) * ι(eᵢ) = algebraMap ℝ (CliffordAlgebra Q₃₃) (Q₃₃ eᵢ) -- ## References -- - Mathlib.LinearAlgebra.CliffordAlgebra.Basic -- - Anchor lemma: `CliffordAlgebra.ι_sq_scalar` -- - QFD Appendix Z.2: Clifford algebra structure -- - QFD Appendix Z.4.A: Centralizer theorem -- ## 1. The Signature (3,3) Quadratic Form /-- The metric signature for 6D phase space Cl(3,3). - Indices 0,1,2: +1 (spacelike) - Indices 3,4,5: -1 (timelike) This corresponds to: - γ₁, γ₂, γ₃: spatial dimensions (x, p_x, etc.) - γ₄: time-like (emergent spacetime) - γ₅, γ₆: internal time-like (frozen by spectral gap) -/ def signature33 : Fin 6 → ℝ | 0 => 1 -- γ₁: spacelike | 1 => 1 -- γ₂: spacelike | 2 => 1 -- γ₃: spacelike | 3 => -1 -- γ₄: timelike (emergent) | 4 => -1 -- γ₅: timelike (internal) | 5 => -1 -- γ₆: timelike (internal) /-- The quadratic form Q₃₃ for the vector space V = Fin 6 → ℝ. For a basis vector eᵢ (represented as Pi.single i 1): Q₃₃(eᵢ) = signature33(i) For a general vector v = Σᵢ vᵢ eᵢ: Q₃₃(v) = Σᵢ signature33(i) · vᵢ² Uses Mathlib's `QuadraticMap.weightedSumSquares` constructor to avoid manual BilinForm API issues. -/ def Q33 : QuadraticForm ℝ (Fin 6 → ℝ) := QuadraticMap.weightedSumSquares ℝ signature33 -- ## 2. The Clifford Algebra Cl(3,3) /-- The Clifford algebra over the quadratic form Q₃₃. This is Mathlib's construction, satisfying all axioms by definition. -/ abbrev Cl33 := CliffordAlgebra Q33 /-- The canonical linear map ι : V → Cl(3,3) that sends basis vectors to Clifford generators. This is Mathlib's `CliffordAlgebra.ι` - the universal property map. -/ def ι33 : (Fin 6 → ℝ) →ₗ[ℝ] Cl33 := ι Q33 -- ## 3. Generator Squaring Theorem /-- A basis vector eᵢ in V = (Fin 6 → ℝ), represented as Pi.single i 1. -/ def basis_vector (i : Fin 6) : Fin 6 → ℝ := Pi.single i (1:ℝ) /-- **Theorem EA-1**: The Basis Generator Squaring Property. For each basis vector eᵢ, the Clifford generator ι(eᵢ) squares to its metric signature: ι(eᵢ) · ι(eᵢ) = signature33(i) · 1 **Proof Strategy**: 1. Use Mathlib's anchor lemma `ι_sq_scalar` 2. Compute Q₃₃(eᵢ) = signature33(i) · 1² = signature33(i) 3. Apply the anchor lemma: ι(v) * ι(v) = algebraMap ℝ Cl33 (Q₃₃ v) This eliminates the axiom `generator_square` from EmergentAlgebra.lean. -/ theorem generator_squares_to_signature (i : Fin 6) : (ι33 (basis_vector i)) * (ι33 (basis_vector i)) = algebraMap ℝ Cl33 (signature33 i) := by -- Step 1: Apply the anchor lemma ι_sq_scalar -- This states: ι Q v * ι Q v = algebraMap R _ (Q v) unfold ι33 rw [ι_sq_scalar] -- Step 2: Show Q₃₃(basis_vector i) = signature33(i) congr 1 unfold Q33 basis_vector rw [QuadraticMap.weightedSumSquares_apply] -- The sum collapses because Pi.single i 1 j = 0 for j ≠ i classical simp only [Pi.single_apply] rw [Finset.sum_eq_single i] · simp · intro j _ hne; simp [hne] · intro h; exact absurd (Finset.mem_univ i) h -- ## 4. Anticommutation Relations /-- **Theorem EA-2**: Distinct basis generators anticommute. For i ≠ j: ι(eᵢ) · ι(eⱼ) + ι(eⱼ) · ι(eᵢ) = 0 **Proof Strategy**: Uses the fundamental Clifford relation: v · w + w · v = 2 * polar(v,w) · 1 For orthogonal basis vectors eᵢ, eⱼ (i≠j): polar(eᵢ, eⱼ) = 0 (diagonal quadratic form) -/ theorem generators_anticommute (i j : Fin 6) (h_ne : i ≠ j) : (ι33 (basis_vector i)) * (ι33 (basis_vector j)) + (ι33 (basis_vector j)) * (ι33 (basis_vector i)) = 0 := by classical unfold ι33 -- Fundamental Clifford relation: `ι v * ι w + ι w * ι v = polar Q v w`. rw [CliffordAlgebra.ι_mul_ι_add_swap] suffices hpolar : QuadraticMap.polar (⇑Q33) (basis_vector i) (basis_vector j) = 0 by simp [hpolar] -- Compute `polar` by expanding `Q(x+y) - Q x - Q y` for our diagonal `Q33`. have hQ_basis (k : Fin 6) : Q33 (basis_vector k) = signature33 k := by unfold Q33 basis_vector rw [QuadraticMap.weightedSumSquares_apply] have h0 : ∀ t : Fin 6, t ≠ k → signature33 t • (basis_vector k t * basis_vector k t) = 0 := by intro t ht simp [basis_vector, Pi.single_apply, ht] have hsum : (∑ t : Fin 6, signature33 t • (basis_vector k t * basis_vector k t)) = signature33 k • (basis_vector k k * basis_vector k k) := by simp only [Fintype.sum_eq_single (a := k) (f := fun t => signature33 t • (basis_vector k t * basis_vector k t)) h0] simp [Pi.single_apply, smul_eq_mul] have hQ_add : Q33 (basis_vector i + basis_vector j) = signature33 i + signature33 j := by unfold Q33 basis_vector rw [QuadraticMap.weightedSumSquares_apply] let f : Fin 6 → ℝ := fun t => signature33 t • ((basis_vector i t + basis_vector j t) * (basis_vector i t + basis_vector j t)) have h0 : ∀ t : Fin 6, t ≠ i ∧ t ≠ j → f t = 0 := by intro t ht have hi : basis_vector i t = 0 := by simp [basis_vector, Pi.single_apply, ht.1] have hj : basis_vector j t = 0 := by simp [basis_vector, Pi.single_apply, ht.2] simp [f, hi, hj] have hsum : (∑ t : Fin 6, f t) = f i + f j := by simpa using (Fintype.sum_eq_add (a := i) (b := j) (f := f) h_ne h0) have fi : f i = signature33 i := by simp [f, basis_vector, Pi.single_apply, h_ne, smul_eq_mul] have fj : f j = signature33 j := by have hji : j ≠ i := Ne.symm h_ne simp [f, basis_vector, Pi.single_apply, hji, smul_eq_mul] -- The sum in terms of f have hf_sum : (∑ x : Fin 6, f x) = signature33 i + signature33 j := by rw [hsum, fi, fj] -- Show goal by unfolding f and converting smul to mul simp only [f, basis_vector, smul_eq_mul] at hf_sum exact hf_sum unfold QuadraticMap.polar -- `Q33 (eᵢ + eⱼ) - Q33 eᵢ - Q33 eⱼ = 0`. -- We discharge the arithmetic with `ring` on the scalar identity. simp [hQ_add, hQ_basis] /-- **Theorem**: Basis vectors are pairwise orthogonal with respect to Q33. This uses Mathlib's `QuadraticMap.IsOrtho` API, which states that v and w are orthogonal iff `polar Q v w = 0`. For our diagonal quadratic form Q33, distinct basis vectors have zero polar product. -/ theorem basis_isOrtho (i j : Fin 6) (h_ne : i ≠ j) : QuadraticMap.IsOrtho Q33 (basis_vector i) (basis_vector j) := by -- IsOrtho is defined as polar Q v w = 0 -- We prove polar = 0 by computing Q(eᵢ + eⱼ) - Q(eᵢ) - Q(eⱼ) classical unfold QuadraticMap.IsOrtho -- Compute Q33 for individual basis vectors have hQ_basis (k : Fin 6) : Q33 (basis_vector k) = signature33 k := by unfold Q33 basis_vector rw [QuadraticMap.weightedSumSquares_apply] have h0 : ∀ t : Fin 6, t ≠ k → signature33 t • (basis_vector k t * basis_vector k t) = 0 := by intro t ht simp [basis_vector, Pi.single_apply, ht] have hsum : (∑ t : Fin 6, signature33 t • (basis_vector k t * basis_vector k t)) = signature33 k • (basis_vector k k * basis_vector k k) := by simp only [Fintype.sum_eq_single (a := k) (f := fun t => signature33 t • (basis_vector k t * basis_vector k t)) h0] simp [Pi.single_apply, smul_eq_mul] -- Compute Q33 for sum of basis vectors have hQ_add : Q33 (basis_vector i + basis_vector j) = signature33 i + signature33 j := by unfold Q33 basis_vector rw [QuadraticMap.weightedSumSquares_apply] let f : Fin 6 → ℝ := fun t => signature33 t • ((basis_vector i t + basis_vector j t) * (basis_vector i t + basis_vector j t)) have h0 : ∀ t : Fin 6, t ≠ i ∧ t ≠ j → f t = 0 := by intro t ht have hi : basis_vector i t = 0 := by simp [basis_vector, ht.1] have hj : basis_vector j t = 0 := by simp [basis_vector, ht.2] simp [f, hi, hj] have hsum : (∑ t : Fin 6, f t) = f i + f j := by simpa using (Fintype.sum_eq_add (a := i) (b := j) (f := f) h_ne h0) have fi : f i = signature33 i := by simp [f, basis_vector, Pi.single_apply, h_ne, smul_eq_mul] have fj : f j = signature33 j := by have hji : j ≠ i := Ne.symm h_ne simp [f, basis_vector, Pi.single_apply, hji, smul_eq_mul] have hf_sum : (∑ x : Fin 6, f x) = signature33 i + signature33 j := by rw [hsum, fi, fj] simp only [f, basis_vector, smul_eq_mul] at hf_sum exact hf_sum -- polar = Q(i+j) - Q(i) - Q(j) = 0 simp [hQ_add, hQ_basis] /-- **Theorem**: Cleaner anticommutation using IsOrtho. For orthogonal basis vectors: `eᵢ * eⱼ = -eⱼ * eᵢ` This version directly uses Mathlib's `ι_mul_ι_comm_of_isOrtho` lemma, providing a one-line proof compared to the manual polar computation. -/ theorem generators_anticommute_alt (i j : Fin 6) (h_ne : i ≠ j) : ι33 (basis_vector i) * ι33 (basis_vector j) = -(ι33 (basis_vector j) * ι33 (basis_vector i)) := by unfold ι33 exact CliffordAlgebra.ι_mul_ι_comm_of_isOrtho (basis_isOrtho i j h_ne) -- ## 5. Connection to EmergentAlgebra.lean /-- **Theorem EA-3**: Signature Values. The signature function matches the metric definition from EmergentAlgebra.lean. -/ theorem signature_values : signature33 0 = 1 ∧ signature33 1 = 1 ∧ signature33 2 = 1 ∧ signature33 3 = -1 ∧ signature33 4 = -1 ∧ signature33 5 = -1 := by unfold signature33 norm_num -- ## Physical Summary -- This file establishes the mathematical foundation for QFD's emergent spacetime: -- 1. **Rigorous Definition**: Cl(3,3) defined via Mathlib's CliffordAlgebra -- 2. **Generator Squaring**: eᵢ² = ηᵢᵢ (proven from ι_sq_scalar) -- 3. **Anticommutation**: {eᵢ, eⱼ} = 0 for i ≠ j -- ## Axiom Elimination Status -- This file reduces the EmergentAlgebra axiom to: -- - 1 placeholder: Computing Q₃₃(basis_vector i) (Pi.single calculation) -- - Uses Mathlib anchor: `ι_sq_scalar` -- The previous placeholder is now resolved; the former `generator_square` -- axiom can be eliminated via this file. -- ## Next Steps -- 1. (Completed) Pi.single computation for `generator_squares_to_signature` -- 2. (Completed) Anticommutation for distinct generators -- 3. Import Cl33.lean into EmergentAlgebra.lean -- 4. Replace axiom with theorem from this file -- ## Overall Progress -- - ✅ HardWall #1,#2: Proven in RickerAnalysis.lean -- - ⚠️ HardWall #3: Physical constraint -- - ✅ Quantization: Proven in GaussianMoments.lean -- - ✅ EmergentAlgebra: Supported by this file (no placeholders) -- Status: 4/5 axioms eliminated (80% complete) -- ## References -- - Mathlib anchor: `CliffordAlgebra.ι_sq_scalar` -- - QFD Appendix Z.2: Clifford algebra Cl(3,3) -- - QFD Appendix Z.4.A: Centralizer = Cl(3,1) end QFD.GA end