import QFD.GA.Cl33 import Mathlib.LinearAlgebra.CliffordAlgebra.Conjugation /-! # Geometric Conjugation (Reversion & Grade Involution) **Status**: Priority 3 Infrastructure **Goal**: Define the "Reverse" operator ($\tilde{A}$) for unitarity checks. ## Definitions * **Reversion ($\tilde{A}$)**: Reverses the order of vectors in a geometric product. $(ab)^\dagger = \tilde{b} \tilde{a}$. * **Grade Involution ($\hat{A}$)**: Flips sign of odd grades. Main automorphism of the algebra. * **Clifford Conjugate ($\bar{A}$)**: Composition of Reverse and Grade Involution. -/ namespace QFD.GA.Conjugation open CliffordAlgebra QFD.GA /-- The phase rotor B = e₄ * e₅ (internal rotation bivector) -/ def B_phase : Cl33 := ι33 (basis_vector 4) * ι33 (basis_vector 5) /-- **Reversion Operator ($\tilde{A}$)** Constructed using Mathlib's `reverse`. Essential property: $\widetilde{AB} = \tilde{B}\tilde{A}$. -/ noncomputable def reverse (x : Cl33) : Cl33 := CliffordAlgebra.reverse x @[simp] theorem reverse_basis_vector (i : Fin 6) : reverse (ι33 (basis_vector i)) = ι33 (basis_vector i) := CliffordAlgebra.reverse_ι (basis_vector i) @[simp] theorem reverse_product (x y : Cl33) : reverse (x * y) = reverse y * reverse x := CliffordAlgebra.reverse.map_mul x y /-- **Theorem: Reversion of the Phase Rotor B** $B = e_4 e_5$. $\tilde{B} = e_5 e_4 = - e_4 e_5 = -B$. This proves B is a "bivector" in the unitary sense ($B^\dagger = -B$). -/ theorem reverse_B_phase : reverse B_phase = - B_phase := by unfold B_phase rw [reverse_product] -- e5, e4 reverse to themselves rw [reverse_basis_vector 5, reverse_basis_vector 4] -- e5 * e4 = - e4 * e5 have h := generators_anticommute 5 4 (by decide) exact add_eq_zero_iff_eq_neg.mp h /-- **Norm Squared via Reversion** In a Euclidean algebra, $|A|^2 = A \tilde{A}$. In Indefinite metric (3,3), we define the magnitude carefully. This provides the algebraic basis for the "Assumption" used in MassFunctional. -/ noncomputable def geometric_norm_sq (x : Cl33) : Cl33 := x * reverse x end QFD.GA.Conjugation