import QFD.GA.BasisOperations import Mathlib.LinearAlgebra.CliffordAlgebra.Grading /-! # Multivector Grade Projections This module provides tools for working with grade-specific components of multivectors in the Clifford algebra Cl(3,3): * Grade 0: Scalars * Grade 1: Vectors * Grade 2: Bivectors * Grade 3: Trivectors * etc. ## Usage These tools enable extraction and manipulation of specific grade components, useful for separating electric/magnetic fields, extracting scalar parts, etc. ## Future Extensions * Full `gradeProjection : ℕ → Cl33 → Cl33` using Mathlib's grading machinery * Tactics for automatic grade separation * Grade-specific simplification lemmas -/ namespace QFD.GA.Grade open QFD.GA open CliffordAlgebra /-! ## Grade Classification Predicates -/ /-- A multivector is a scalar if it's in the image of the canonical embedding ℝ → Cl33 -/ def isScalar (x : Cl33) : Prop := ∃ (r : ℝ), x = algebraMap ℝ Cl33 r /-- A multivector is a vector (grade 1) if it's a linear combination of basis vectors -/ def isVector (x : Cl33) : Prop := ∃ f : Fin 6 → ℝ, x = ∑ i, f i • e i /-- A multivector is a bivector (grade 2) if it's a linear combination of basis bivectors -/ def isBivector (x : Cl33) : Prop := ∃ f : Fin 6 → Fin 6 → ℝ, x = ∑ i, ∑ j, if i < j then f i j • (e i * e j) else 0 /-! ## Helper Lemmas -/ /-- The zero element is a scalar -/ theorem zero_isScalar : isScalar (0 : Cl33) := by use 0 simp [map_zero] /-- Scalar multiples of scalars are scalars -/ theorem smul_scalar_isScalar {r : ℝ} {x : Cl33} (h : isScalar x) : isScalar (r • x) := by obtain ⟨rx, hx⟩ := h refine ⟨r * rx, ?_⟩ simp [hx, isScalar, Algebra.smul_def, map_mul] /-- Sum of scalars is a scalar -/ theorem add_scalar_isScalar {x y : Cl33} (hx : isScalar x) (hy : isScalar y) : isScalar (x + y) := by obtain ⟨rx, hx⟩ := hx obtain ⟨ry, hy⟩ := hy use rx + ry rw [hx, hy, map_add] /-! ## Grade Extraction (Placeholder) -/ /-- Extract the scalar (grade 0) component of a multivector Note: This is a placeholder. Full implementation requires Mathlib's grading structure -/ noncomputable def scalarPart (x : Cl33) : ℝ := 0 /-- Extract the vector (grade 1) component of a multivector Note: This is a placeholder. Full implementation requires Mathlib's grading structure -/ noncomputable def vectorPart (x : Cl33) : Cl33 := 0 /-- Extract the bivector (grade 2) component of a multivector Note: This is a placeholder. Full implementation requires Mathlib's grading structure -/ noncomputable def bivectorPart (x : Cl33) : Cl33 := 0 /-! ## Usage Examples ```lean -- Check if an element is a scalar example : isScalar (algebraMap ℝ Cl33 5) := by use 5; rfl -- Check if a basis vector is a vector example : isVector (e 0) := by use fun i => if i = 0 then 1 else 0 simp [Finset.sum_ite_eq'] ``` -/ end QFD.GA.Grade