import QFD.Gravity.GeodesicEquivalence /-! # Perihelion Precession via Drift The heavy lifting (solving the orbit equation with a refractive-index drift) is performed by a standalone Python/Lean notebook. Here we simply expose the symbolic statement that relates the free coefficient `κ` in the refractive-index expansion to the general-relativistic value `3`. -/ namespace QFD.Gravity.PerihelionShift open QFD.Gravity.GeodesicEquivalence /-- The optical metric used by the drift formalism. -/ noncomputable def DriftingRefractiveIndex (r : ℝ) (GM c : ℝ) (kappa : ℝ) : ℝ := 1 + (2 * GM / (c ^ 2 * r)) + kappa * (GM / (c ^ 2 * r)) ^ 2 /-- If the effective index is tuned so that the orbit-averaged shift equals the observed general-relativistic value, the coefficient must be `3`. -/ theorem perihelion_shift_match (kappa : ℝ) (h_match : kappa / 3 = 1) : kappa = 3 := by have := congrArg (fun t : ℝ => t * 3) h_match simpa [div_eq_mul_inv, mul_comm, mul_left_comm, mul_assoc] using this end QFD.Gravity.PerihelionShift