import QFD.Gravity.GeodesicEquivalence import Mathlib.Analysis.Calculus.Deriv.Basic /-! # Gravitational Lensing as Refraction We keep the analytic integral abstract so that numerical/analytic pipelines can plug in their preferred refractive-index profile. The exported theorem simply states that, once the integral matches General Relativity's prediction, we may reuse the constant `4GM/(bc^2)` downstream without duplicating the calculus. -/ namespace QFD.Gravity.SnellLensing open QFD.Gravity.GeodesicEquivalence open scoped Real /-- The deflection integral sketched in the design notes. -/ noncomputable def deflection_integral (b : ℝ) (n : ℝ → ℝ) : ℝ := ∫ z : ℝ, deriv n (Real.sqrt (b ^ 2 + z ^ 2)) /-- Abstract placeholder: practical proofs pin this down by providing `n`. -/ theorem einstein_angle_refractive_match {b : ℝ} {n : ℝ → ℝ} (h_model : deflection_integral b n = 4) : deflection_integral b n = 4 := h_model end QFD.Gravity.SnellLensing