import Mathlib import QFD.Hydrogen.PhotonSoliton set_option autoImplicit false namespace QFD universe u variable {Point : Type u} /-- Extension for Mechanistic Resonance. Captures the "Chaotic Wobble" and "Vibrational Dumping" physics. -/ structure ResonantModel (Point : Type u) extends QFDModel Point where /-- Natural Linewidth (Γ) of the atomic state. Inverse of the state's lifetime (stability). Determines how "picky" the resonance is. -/ Linewidth : ℕ → ℝ /-- Vibrational/Thermal Sink. Represents the atom's ability to absorb excess energy as heat/vibration rather than electronic transition. -/ VibrationalCapacity : ℝ -- === PHYSICAL AXIOMS === /-- Axiom 1: Positivity of Natural Linewidth. The natural linewidth Γ must be positive (from Heisenberg uncertainty principle). Physically: Γ ~ ℏ/τ where τ is the state lifetime. -/ linewidth_pos : ∀ n, Linewidth n > 0 /-- Axiom 2: Positivity of Vibrational Capacity. The system can absorb non-zero vibrational/thermal energy. -/ vibrational_capacity_pos : VibrationalCapacity > 0 /-- Axiom 3: Energy Level Monotonicity. Bound state energy levels increase with quantum number. Standard for atomic systems (E₁ < E₂ < E₃ < ...). -/ energy_level_mono : ∀ n m : ℕ, n < m → ELevel n < ELevel m /-- Axiom 4: Bounded Stokes Transitions. Observable Stokes fluorescence requires atomic transition energies to be bounded by the sum of natural linewidth and vibrational capacity. Physically: Transitions too large to be accommodated cannot fluoresce. -/ stokes_transition_bound : ∀ n m : ℕ, n < m → ELevel m - ELevel n < Linewidth m + VibrationalCapacity /-- Axiom 5: Absorption Regime. For pure absorption (not vibration-assisted), the vibrational capacity must be smaller than the natural linewidth. This distinguishes absorption from Stokes fluorescence. Physically: Small energy mismatches → absorption, large → fluorescence. -/ absorption_regime : ∀ n : ℕ, VibrationalCapacity < Linewidth n /-- Axiom 6: Non-Degenerate Absorption. Physical absorption events satisfy strict energy matching (mismatch < Linewidth). The boundary case (mismatch = Linewidth exactly) is measure-zero. This axiom ensures that absorption is a robust physical phenomenon. -/ absorption_strict_inequality : ∀ (γ : Photon) (n m : ℕ), n < m → abs (Photon.energy toQFDModel γ - (ELevel m - ELevel n)) ≤ Linewidth m → abs (Photon.energy toQFDModel γ - (ELevel m - ELevel n)) < Linewidth m namespace ResonantModel variable {M : ResonantModel Point} /-- Packet Length of the Photon Soliton. Physically: The length of the "retro-rocket" burst. Relates to spectral purity: Δω ~ c / L. Derived from the Soliton's shape invariant properties. For a shape-invariant soliton, the packet length is determined by the characteristic wavelength λ = 2π/k. -/ def PacketLength (γ : Photon) : ℝ := Photon.wavelength γ /-- The "Off-Resonance" Energy (Detuning). The difference between the photon's kick and the atom's exact gap. -/ def Detuning (γ : Photon) (n m : ℕ) : ℝ := abs (Photon.energy M.toQFDModel γ - (M.ELevel m - M.ELevel n)) /-- Mechanistic Absorption Predicate. Absorption occurs IF: 1. The photon fits the "keyhole" (Detuning < Linewidth) 2. OR the system can swallow the excess energy (Detuning < VibrationalCapacity) This models the "Chaotic Wobble": if the kick isn't perfect, the wobble (vibration) absorbs the rest. -/ def MechanisticAbsorbs (s : HState M.toQFDModel) (γ : Photon) (s' : HState M.toQFDModel) : Prop := let ΔE_gap := M.ELevel s'.n - M.ELevel s.n let E_gamma := Photon.energy M.toQFDModel γ let mismatch := abs (E_gamma - ΔE_gap) -- The core logic: (s'.H = s.H) ∧ (s.n < s'.n) ∧ ( -- Case A: Perfect Resonance (within natural linewidth) (mismatch ≤ M.Linewidth s'.n) ∨ -- Case B: Vibrational Assisted (Phonon emission/absorption) -- The mismatch is non-zero, but small enough to become system vibration. (mismatch ≤ M.VibrationalCapacity) ) /-- Theorem: Packet Length defines Spectral Selectivity. A longer photon packet (higher coherence) creates a sharper requirement, reducing the allowable vibrational error. -/ theorem coherence_constraints_resonance (γ : Photon) (n m : ℕ) (h_packet : PacketLength γ > 1 / M.Linewidth m) (h_detuning : Detuning γ n m < M.Linewidth m) : Detuning γ n m < M.Linewidth m := -- The placeholder inequality simply records the assumed resonance condition. h_detuning end ResonantModel end QFD