-- TODO: Replace with specific imports after fixing issues import Mathlib set_option autoImplicit false namespace QFD /-! # QFD Photon Sector: Kinematic Soliton Model This update bridges the gap between "Bookkeeping" and "Dynamics". It models the Photon not just as an energy quantum, but as a spatial Soliton with: 1. Wavenumber k (geometry) 2. Momentum p = ℏk (mechanical recoil) 3. Linear Dispersion ω = c|k| (stiffness constraint) 4. Shape Invariance (soliton stability) ## Physical Context **The QFD Picture**: - Photon = propagating vacuum shear wave (soliton) - Wavelength λ determines geometry: k = 2π/λ - Momentum p = ℏk is the "retro-rocket kick" - Frequency ω = c·k from vacuum stiffness (linear dispersion) - Energy E = ℏω = ℏck (quantized angular impulse) **Soliton Stability**: - ShapeInvariant predicate: Dispersion (spreading) ↔ Nonlinear focusing (λ_sat) - Mathematically: d(Width)/dt = 0 - Physical: Vacuum saturation prevents dispersion **Absorption as Gear Mesh**: - Photon k must geometrically match hydrogen energy gap - "Lock and key" mechanism: ℏck = E_m - E_n - Momentum conservation implicit (recoil transferred to H) -/ /- 1) Field and Configuration Structures -/ structure PsiField (Point : Type*) where ψ : Point → ℝ -- Placeholder for Cl(3,3) multivector field structure Config where charge : ℤ energy : ℝ /-- The spatial "footprint" or wavelength scale of the configuration -/ scale : ℝ /- 2) QFD Model with Kinematic Parameters -/ variable {Point : Type*} structure QFDModel (Point : Type*) where Ψ : PsiField Point -- The Three Constants + Planck /-- Fine-structure coupling (gear mesh strength) -/ α : ℝ /-- Vacuum stiffness (controls c and dispersion suppression) -/ β : ℝ /-- Saturation scale (nonlinear focusing) -/ lambda_sat : ℝ /-- Angular impulse of the electron vortex -/ ℏ : ℝ /-- Speed of light: Terminal velocity of vacuum shear waves. In QFD, c ≈ sqrt(β / density). -/ c_vac : ℝ -- Existence Predicates PhaseClosed : Config → Prop OnShell : Config → Prop FiniteEnergy : Config → Prop /-- The Soliton Stability Predicate. Represents the "Soliton Balance": Dispersion (spreading) is exactly cancelled by Nonlinear Focusing (lambda_sat). Mathematically: d(Width)/dt = 0. -/ ShapeInvariant : Config → Prop -- Interaction Predicates Bound : Config → Config → Prop ELevel : ℕ → ℝ namespace QFDModel variable {M : QFDModel Point} /- 3) Photon: Geometry, Momentum, and Dispersion -/ /-- A Photon is defined by its spatial wavenumber `k`. Frequency and Energy are derived via the Vacuum constraints. -/ structure Photon where /-- Wavenumber k = 2π / λ -/ k : ℝ /-- Wavenumber must be positive for a propagating wave -/ hk_pos : k > 0 namespace Photon /-- Wavelength λ = 2π / k -/ noncomputable def wavelength (γ : Photon) : ℝ := (2 * Real.pi) / γ.k /-- Linear Momentum p = ℏk. This fulfills the requirement: p ∝ 1/λ. Physical meaning: The "kick" delivered by the retro-rocket. -/ def momentum (M : QFDModel Point) (γ : Photon) : ℝ := M.ℏ * γ.k /-- Frequency ω = c|k|. This assumes the "Stiff Vacuum" limit where dispersion is negligible. -/ def frequency (M : QFDModel Point) (γ : Photon) : ℝ := M.c_vac * γ.k /-- Energy E = ℏω. Standard quantization derived from the vortex angular impulse. -/ def energy (M : QFDModel Point) (γ : Photon) : ℝ := M.ℏ * (frequency M γ) /-- The Dispersion Relation Lemma: Proves that Energy is proportional to Momentum times Speed of Light. E = p * c This is the relativistic energy-momentum relation for massless particles. -/ theorem energy_momentum_relation (γ : Photon) : energy M γ = (momentum M γ) * M.c_vac := by simp [energy, frequency, momentum] ring /-- Photon wavelength is positive (follows from k > 0) -/ theorem wavelength_pos (γ : Photon) : wavelength γ > 0 := by unfold wavelength have : (2 : ℝ) * Real.pi > 0 := by positivity exact div_pos this γ.hk_pos /-- Momentum is positive for forward-propagating photons -/ theorem momentum_pos (γ : Photon) (h_hbar : M.ℏ > 0) : momentum M γ > 0 := by unfold momentum exact mul_pos h_hbar γ.hk_pos /-- Energy is positive for physical photons -/ theorem energy_pos (γ : Photon) (h_hbar : M.ℏ > 0) (h_c : M.c_vac > 0) : energy M γ > 0 := by unfold energy frequency exact mul_pos h_hbar (mul_pos h_c γ.hk_pos) end Photon /- 4) Solitons with Stability Requirements -/ /-- A Soliton is now PhaseClosed, OnShell, FiniteEnergy AND ShapeInvariant. The ShapeInvariant gate ensures the soliton maintains its spatial profile. This is the mathematical expression of "dispersion ↔ nonlinear focusing balance". -/ def Soliton (M : QFDModel Point) : Type := { c : Config // M.PhaseClosed c ∧ M.OnShell c ∧ M.FiniteEnergy c ∧ M.ShapeInvariant c } def Soliton.toConfig (s : Soliton M) : Config := s.val def Soliton.charge (s : Soliton M) : ℤ := s.val.charge def Soliton.energy (s : Soliton M) : ℝ := s.val.energy def Soliton.scale (s : Soliton M) : ℝ := s.val.scale /-- Electron soliton: charge = -1 -/ def Electron (M : QFDModel Point) : Type := { s : Soliton M // s.val.charge = (-1) } def Electron.toSoliton (e : Electron M) : Soliton M := e.val def Electron.toConfig (e : Electron M) : Config := e.val.val /-- Proton soliton: charge = +1 -/ def Proton (M : QFDModel Point) : Type := { s : Soliton M // s.val.charge = (1) } def Proton.toSoliton (p : Proton M) : Soliton M := p.val def Proton.toConfig (p : Proton M) : Config := p.val.val /-- Constructor: if config meets 4 gates → Soliton exists -/ def soliton_of_config (c : Config) (h₁ : M.PhaseClosed c) (h₂ : M.OnShell c) (h₃ : M.FiniteEnergy c) (h₄ : M.ShapeInvariant c) : Soliton M := ⟨c, ⟨h₁, h₂, h₃, h₄⟩⟩ /- 5) Hydrogen and State Structure -/ structure Hydrogen (M : QFDModel Point) where e : Electron M p : Proton M bound : M.Bound e.toConfig p.toConfig namespace Hydrogen variable {M : QFDModel Point} def netCharge (H : Hydrogen M) : ℤ := H.e.toConfig.charge + H.p.toConfig.charge /-- Hydrogen is neutral: (+1) + (−1) = 0 -/ theorem netCharge_zero (H : Hydrogen M) : H.netCharge = 0 := by have he : H.e.val.val.charge = (-1) := H.e.property have hp : H.p.val.val.charge = (1) := H.p.property simp only [Hydrogen.netCharge, Electron.toConfig, Proton.toConfig, he, hp] ring end Hydrogen /-- Hydrogen state = (e,p) pair + discrete mode index n -/ structure HState (M : QFDModel Point) where H : Hydrogen M n : ℕ namespace HState variable {M : QFDModel Point} def energy (s : HState M) : ℝ := M.ELevel s.n end HState /- 6) Photon Absorption with Geometric Matching -/ /-- Absorption defined by Kinematic Conservation. - Same hydrogen pair (no dissociation) - Mode index increases (excitation) - Energy gap exactly matched by photon energy Momentum conservation is implicit: photon momentum transferred to H. -/ def Absorbs (M : QFDModel Point) (s : HState M) (γ : Photon) (s' : HState M) : Prop := s'.H = s.H ∧ s.n < s'.n ∧ M.ELevel s'.n = M.ELevel s.n + Photon.energy M γ /-- The "Gear Mesh" Theorem. If the photon's spatial geometry (k) produces an energy (ℏck) that exactly matches the gap between Hydrogen gears (E_m - E_n), absorption is valid. Physical interpretation: - k = 2π/λ is the spatial frequency of the photon soliton - E = ℏck is the energy quantum carried by this wave - Absorption requires "lock and key": E must match ΔE_hydrogen exactly -/ theorem absorption_geometric_match {M : QFDModel Point} {H : Hydrogen M} {n m : ℕ} (hnm : n < m) (γ : Photon) -- The geometric condition: k must scale to the energy gap (hGeo : M.ℏ * (M.c_vac * γ.k) = M.ELevel m - M.ELevel n) : Absorbs M ⟨H, n⟩ γ ⟨H, m⟩ := by refine ⟨rfl, hnm, ?_⟩ simp [Photon.energy, Photon.frequency] at * linarith [hGeo] /-- Emission: reverse process - Same hydrogen pair - Mode index decreases (de-excitation) - Energy released as photon -/ def Emits (M : QFDModel Point) (s : HState M) (s' : HState M) (γ : Photon) : Prop := s'.H = s.H ∧ s'.n < s.n ∧ M.ELevel s.n = M.ELevel s'.n + Photon.energy M γ /-- Emission theorem: if photon energy matches downward gap, emission valid -/ theorem emission_geometric_match {M : QFDModel Point} {H : Hydrogen M} {n m : ℕ} (hmn : m < n) (γ : Photon) (hGeo : M.ℏ * (M.c_vac * γ.k) = M.ELevel n - M.ELevel m) : Emits M ⟨H, n⟩ ⟨H, m⟩ γ := by refine ⟨rfl, hmn, ?_⟩ simp [Photon.energy, Photon.frequency] at * linarith [hGeo] /- 7) Summary Theorems -/ /-- Creation theorem: electron exists if config meets the four stability gates. -/ theorem electron_exists_of_config (h : ∃ c : Config, M.PhaseClosed c ∧ M.OnShell c ∧ M.FiniteEnergy c ∧ M.ShapeInvariant c ∧ c.charge = (-1)) : Nonempty (Electron M) := by rcases h with ⟨c, hcClosed, hcOnShell, hcFinite, hcShape, hcCharge⟩ let s : Soliton M := soliton_of_config (M := M) c hcClosed hcOnShell hcFinite hcShape exact ⟨⟨s, by simpa [Soliton.charge, s] using hcCharge⟩⟩ /-- Creation theorem: proton exists if config meets the four stability gates. -/ theorem proton_exists_of_config (h : ∃ c : Config, M.PhaseClosed c ∧ M.OnShell c ∧ M.FiniteEnergy c ∧ M.ShapeInvariant c ∧ c.charge = (1)) : Nonempty (Proton M) := by rcases h with ⟨c, hcClosed, hcOnShell, hcFinite, hcShape, hcCharge⟩ let s : Soliton M := soliton_of_config (M := M) c hcClosed hcOnShell hcFinite hcShape exact ⟨⟨s, by simpa [Soliton.charge, s] using hcCharge⟩⟩ end QFDModel end QFD