-- Specific imports instead of full Mathlib import Mathlib.Data.Real.Basic import Mathlib.Analysis.Real.Pi.Bounds import Mathlib.Tactic.Linarith import Mathlib.Tactic.Ring import QFD.Hydrogen.PhotonSoliton set_option autoImplicit false namespace QFD /-! # Photon + Hydrogen soliton: stability + momentum/wavelength addendum This file intentionally keeps the physics *axiomatized* but the logic *fully formal*. We extend the earlier `QFDModel` scaffold with additional structure needed for a "stable non-dispersive soliton" story: • a stability predicate `Stable` • a time evolution operator `Evolve` • a "shape preserved" witness: evolution is (translation ∘ internal phase rotation) Separately we define a photon record with (ω, k, lam_w) and prove: • p = ℏ k • k lam_w = 2π ⇒ p ∝ 1/lam_w • ω = cVac k ⇒ E = cVac p None of this solves PDEs in Lean. The point is to provide a *clean interface* between your analytic derivations (paper) and machine-checked bookkeeping / invariants (Lean). -/ universe u variable {Point : Type u} /-- An extension of the base `QFDModel` carrying the extra knobs used for stability and non-dispersive propagation. -/ structure QFDModelStable (Point : Type u) extends QFDModel Point where /-- Vacuum light speed in the quiescent ground state. -/ cVac : ℝ /-- Momentum functional of a localized configuration. (You can later refine this to a multivector/4-vector.) -/ Momentum : Config → ℝ /-- Stability gate: e.g. Lyapunov stability / local minimum of an energy functional at fixed topological invariants. -/ Stable : Config → Prop /-- Time evolution of configurations under the Ψ-field dynamics. -/ Evolve : ℝ → Config → Config /-- Spatial translation along the propagation axis (1D for now). -/ Shift : ℝ → Config → Config /-- Internal phase/rotor evolution (abstracted as a group action). -/ PhaseRotate : ℝ → Config → Config /- Invariance axioms (minimal set for proofs below). -/ evolve_preserves_charge : ∀ t c, (Evolve t c).charge = c.charge evolve_preserves_energy : ∀ t c, (Evolve t c).energy = c.energy evolve_preserves_momentum : ∀ t c, Momentum (Evolve t c) = Momentum c /-- Non-dispersive/orbit form: if `c` is a *stable soliton*, then for every time `t` the evolved configuration equals a translate+phase-rotate of the original. This is the formal handle for: "shape preserved, just moves and rotates". -/ evolve_is_shift_phase_of_stable : ∀ c, PhaseClosed c → OnShell c → FiniteEnergy c → Stable c → ∀ t, ∃ x θ, Evolve t c = PhaseRotate θ (Shift x c) /-- Translating/rotating a valid soliton preserves the three existence gates. -/ gates_invariant_under_shift_phase : ∀ c x θ, (PhaseClosed c ∧ OnShell c ∧ FiniteEnergy c) → (PhaseClosed (PhaseRotate θ (Shift x c)) ∧ OnShell (PhaseRotate θ (Shift x c)) ∧ FiniteEnergy (PhaseRotate θ (Shift x c))) /-- Stability is preserved under translation+phase-rotation (symmetry of the medium). -/ stable_invariant_under_shift_phase : ∀ c x θ, Stable c → Stable (PhaseRotate θ (Shift x c)) namespace QFDModelStable variable {M : QFDModelStable Point} /-- "Stable soliton" = the three existence gates plus stability plus non-dispersive propagation. -/ def StableSoliton (M : QFDModelStable Point) : Type := { c : Config // M.PhaseClosed c ∧ M.OnShell c ∧ M.FiniteEnergy c ∧ M.Stable c ∧ (∀ t, ∃ x θ, M.Evolve t c = M.PhaseRotate θ (M.Shift x c)) } /-- Coerce a StableSoliton to its underlying Config. -/ def StableSoliton.toConfig (s : StableSoliton M) : Config := s.val /-- Constructor: if you can exhibit a configuration meeting all gates, you can build a `StableSoliton` term in Lean. -/ def stableSoliton_of_config (c : Config) (hC : M.PhaseClosed c) (hS : M.OnShell c) (hF : M.FiniteEnergy c) (hStab : M.Stable c) : StableSoliton M := by refine ⟨c, ?_⟩ refine ⟨hC, hS, hF, hStab, ?_⟩ intro t simpa using M.evolve_is_shift_phase_of_stable c hC hS hF hStab t /-- Persistence theorem: a stable soliton stays a stable soliton under evolution. This is the formal statement of "no viscosity → no dissipation → the soliton's coherence is preserved; it only translates and accumulates phase". -/ theorem stableSoliton_persists (s : StableSoliton M) (t : ℝ) : ∃ s' : StableSoliton M, s'.toConfig = M.Evolve t s.toConfig := by classical rcases s with ⟨c, hC, hS, hF, hStab, hND⟩ -- Use the nondispersive witness to express the evolved state as shift+phase. rcases hND t with ⟨x, θ, hE⟩ let c' : Config := M.PhaseRotate θ (M.Shift x c) -- Gates and stability are invariant under shift+phase. have hG' : M.PhaseClosed c' ∧ M.OnShell c' ∧ M.FiniteEnergy c' := by -- expand c' and apply the model's invariance lemma simpa [c'] using M.gates_invariant_under_shift_phase c x θ ⟨hC, hS, hF⟩ have hStab' : M.Stable c' := by simpa [c'] using M.stable_invariant_under_shift_phase c x θ hStab -- Non-dispersive orbit from the new state follows from stability + gates. have hND' : ∀ τ, ∃ x' θ', M.Evolve τ c' = M.PhaseRotate θ' (M.Shift x' c') := by intro τ exact M.evolve_is_shift_phase_of_stable c' hG'.1 hG'.2.1 hG'.2.2 hStab' τ -- Package everything as a StableSoliton. refine ⟨⟨c', ?_⟩, ?_⟩ · exact ⟨hG'.1, hG'.2.1, hG'.2.2, hStab', hND'⟩ · -- Identify the stored configuration with the actual evolution at time t. -- From hE: Evolve t c = PhaseRotate θ (Shift x c) = c' -- and `c` is the underlying config of `s`. simp only [StableSoliton.toConfig, c'] exact hE.symm /-! ## Photon with wavelength/wavenumber/momentum bookkeeping We model the photon as a propagating, non-dispersive wavelet of the Ψ-field. Here we only formalize: • wavelength relation: k · lam_w = 2π • momentum: p = ℏ k • dispersion (massless): ω = cVac · k • therefore: E = ℏ ω = cVac · p -/ /-- Photon with angular frequency ω, wavenumber k, and wavelength lam_w. We postulate the exact geometric identity k·lam_w = 2π (no dispersion in vacuum). -/ structure PhotonWave where ω : ℝ k : ℝ lam_w : ℝ h_lam : lam_w ≠ 0 hk_lam : k * lam_w = 2 * Real.pi namespace PhotonWave variable (M : QFDModelStable Point) /-- Photon energy bookkeeping. -/ def energy (γ : PhotonWave) : ℝ := M.ℏ * γ.ω /-- Photon momentum bookkeeping. -/ def momentum (γ : PhotonWave) : ℝ := M.ℏ * γ.k /-- From k·λ = 2π and λ ≠ 0, derive k = 2π/λ. -/ theorem k_eq_twoPi_div_lambda (γ : PhotonWave) : γ.k = (2 * Real.pi) / γ.lam_w := by have h := congrArg (fun x => x / γ.lam_w) γ.hk_lam -- h : (γ.k * γ.lam_w) / γ.lam_w = (2π) / γ.lam_w -- simplify LHS using λ ≠ 0 simpa [mul_div_cancel_right₀ γ.k γ.h_lam, mul_assoc] using h /-- Momentum is inversely proportional to wavelength: p = ℏ·(2π/λ). -/ theorem momentum_eq_hbar_twoPi_div_lambda (γ : PhotonWave) : momentum M γ = (M.ℏ * (2 * Real.pi)) / γ.lam_w := by -- momentum = ℏ k, and k = 2π/λ simp only [momentum] rw [k_eq_twoPi_div_lambda γ] ring /-- Massless dispersion in the quiescent vacuum: ω = cVac · k. In QFD, this is the emergent light-cone statement in the vacuum ground state. -/ def MasslessDispersion (γ : PhotonWave) : Prop := γ.ω = M.cVac * γ.k /-- If ω = cVac·k, then E = cVac·p (the hallmark of massless propagation). -/ theorem energy_eq_cVac_mul_momentum (γ : PhotonWave) (hDisp : MasslessDispersion M γ) : energy M γ = M.cVac * momentum M γ := by -- E = ℏ ω = ℏ (c k) = c (ℏ k) = c p simp only [energy, momentum] -- Use the dispersion relation: ω = cVac * k rw [hDisp] -- Now goal is: ℏ * (cVac * k) = cVac * (ℏ * k) ring end PhotonWave /-! ## Optional: Absorption/emission with explicit photon momentum (1D recoil) This extends the earlier energy-gap relations by adding a momentum bookkeeping constraint. You can later upgrade momentum to a 4-vector and include recoil mass. -/ /-- Hydrogen state with a center-of-mass momentum tag (1D). We reuse the earlier `Hydrogen` definition (from `PhotonSoliton.lean`). -/ structure HStateP (M : QFDModelStable Point) where H : QFDModel.Hydrogen (M.toQFDModel) n : ℕ P : ℝ namespace HStateP variable {M : QFDModelStable Point} def energy (s : HStateP M) : ℝ := M.ELevel s.n def momentum (s : HStateP M) : ℝ := s.P end HStateP /-- Absorption with recoil: same H-pair, level increases, energy/momentum conserved. -/ def AbsorbsP (M : QFDModelStable Point) (s : HStateP M) (γ : PhotonWave) (s' : HStateP M) : Prop := s'.H = s.H ∧ s.n < s'.n ∧ s'.energy = s.energy + PhotonWave.energy M γ ∧ s'.momentum = s.momentum + PhotonWave.momentum M γ /-- Emission with recoil: same H-pair, level decreases, energy/momentum conserved. -/ def EmitsP (M : QFDModelStable Point) (s : HStateP M) (s' : HStateP M) (γ : PhotonWave) : Prop := s'.H = s.H ∧ s'.n < s.n ∧ s.energy = s'.energy + PhotonWave.energy M γ ∧ s.momentum = s'.momentum + PhotonWave.momentum M γ /-- Absorption is valid if photon matches discrete energy gap, with recoil. -/ theorem absorptionP_of_gap {M : QFDModelStable Point} {H : QFDModel.Hydrogen (M.toQFDModel)} {n m : ℕ} (hnm : n < m) (P : ℝ) (γ : PhotonWave) (hGap : PhotonWave.energy M γ = M.ELevel m - M.ELevel n) : AbsorbsP M ⟨H, n, P⟩ γ ⟨H, m, P + PhotonWave.momentum M γ⟩ := by refine ⟨rfl, hnm, ?_, ?_⟩ · -- energy bookkeeping have : M.ELevel m = M.ELevel n + PhotonWave.energy M γ := by linarith [hGap] simpa [HStateP.energy] using this · -- momentum bookkeeping is definitional with the chosen recoil tag simp [HStateP.momentum] end QFDModelStable end QFD