import Mathlib set_option autoImplicit false namespace QFD /-! # QFD Photon Sector: Kinematic Soliton Model This update bridges the gap between "Bookkeeping" and "Dynamics". It models the Photon not just as an energy quantum, but as a spatial Soliton with: 1. Wavenumber k (geometry) 2. Momentum p = ℏk (mechanical recoil) 3. Linear Dispersion ω = c|k| (stiffness constraint) 4. Shape Invariance (soliton stability) -/ universe u variable {Point : Type u} structure PsiField (Point : Type u) where ψ : Point → ℝ -- Placeholder for Cl(3,3) multivector field structure Config (Point : Type u) where charge : ℤ energy : ℝ /-- The spatial "footprint" or wavelength scale of the configuration -/ scale : ℝ structure QFDModel (Point : Type u) where Ψ : PsiField Point -- The Three Constants + Planck /-- Fine-structure coupling (gear mesh strength) -/ α : ℝ /-- Vacuum stiffness (controls c and dispersion suppression) -/ β : ℝ /-- Saturation scale (nonlinear focusing) -/ λ_sat : ℝ /-- Angular impulse of the electron vortex -/ ℏ : ℝ /-- Speed of light: Terminal velocity of vacuum shear waves. In QFD, c ≈ sqrt(β / density). -/ c_vac : ℝ -- Existence Predicates PhaseClosed : Config Point → Prop OnShell : Config Point → Prop FiniteEnergy : Config Point → Prop /-- The Soliton Stability Predicate. Represents the "Soliton Balance": Dispersion (spreading) is exactly cancelled by Nonlinear Focusing (λ_sat). Mathematically: d(Width)/dt = 0. -/ ShapeInvariant : Config Point → Prop -- Interaction Predicates Bound : Config Point → Config Point → Prop ELevel : ℕ → ℝ namespace QFDModel variable {M : QFDModel Point} /- 1) The Photon: Now with Geometry and Momentum -/ /-- A Photon is defined by its spatial wavenumber `k`. Frequency and Energy are derived via the Vacuum constraints. -/ structure Photon where /-- Wavenumber k = 2π / λ -/ k : ℝ /-- Wavenumber must be positive for a propagating wave -/ hk_pos : k > 0 namespace Photon /-- Wavelength λ = 2π / k -/ noncomputable def wavelength (γ : Photon) : ℝ := (2 * Real.pi) / γ.k /-- Linear Momentum p = ℏk. This fulfills the user requirement: p ∝ 1/λ. Physical meaning: The "kick" delivered by the retro-rocket. -/ def momentum (M : QFDModel Point) (γ : Photon) : ℝ := M.ℏ * γ.k /-- Frequency ω = c|k|. This assumes the "Stiff Vacuum" limit where dispersion is negligible. -/ def frequency (M : QFDModel Point) (γ : Photon) : ℝ := M.c_vac * γ.k /-- Energy E = ℏω. Standard quantization derived from the vortex angular impulse. -/ def energy (M : QFDModel Point) (γ : Photon) : ℝ := M.ℏ * (frequency M γ) /-- The Dispersion Relation Lemma: Proves that Energy is proportional to Momentum times Speed of Light. E = p * c -/ theorem energy_momentum_relation (γ : Photon) : energy M γ = (momentum M γ) * M.c_vac := by simp [energy, frequency, momentum] ring end Photon /- 2) Solitons: Now with Stability Requirements -/ /-- A Soliton is now PhaseClosed, OnShell, FiniteEnergy AND ShapeInvariant. -/ def Soliton (M : QFDModel Point) : Type u := { c : Config Point // M.PhaseClosed c ∧ M.OnShell c ∧ M.FiniteEnergy c ∧ M.ShapeInvariant c } -- Added stability requirement instance : Coe (Soliton M) (Config Point) := ⟨Subtype.val⟩ def Electron (M : QFDModel Point) : Type u := { s : Soliton M // (s : Config Point).charge = (-1) } def Proton (M : QFDModel Point) : Type u := { s : Soliton M // (s : Config Point).charge = (1) } /- 3) Hydrogen and "Lock and Key" Absorption -/ structure Hydrogen (M : QFDModel Point) where e : Electron M p : Proton M bound : M.Bound (e : Config Point) (p : Config Point) structure HState (M : QFDModel Point) where H : Hydrogen M n : ℕ /-- Absorption defined by Kinematic Conservation. Ideally, this would also include conservation of momentum (p_photon transferred to H), but here we focus on the Energy "Tooth Matching". -/ def Absorbs (M : QFDModel Point) (s : HState M) (γ : Photon) (s' : HState M) : Prop := s'.H = s.H ∧ s.n < s'.n ∧ M.ELevel s'.n = M.ELevel s.n + Photon.energy M γ /-- The "Gear Mesh" Theorem. If the photon's spatial geometry (k) produces an energy (ℏck) that exactly matches the gap between Hydrogen gears (E_m - E_n), absorption is valid. -/ theorem absorption_geometric_match {M : QFDModel Point} {H : Hydrogen M} {n m : ℕ} (hnm : n < m) (γ : Photon) -- The geometric condition: k must scale to the energy gap (hGeo : M.ℏ * (M.c_vac * γ.k) = M.ELevel m - M.ELevel n) : Absorbs M ⟨H, n⟩ γ ⟨H, m⟩ := by refine ⟨rfl, hnm, ?_⟩ simp [Photon.energy, Photon.frequency] at * linarith [hGeo] end QFDModel end QFD