import Mathlib import QFD.Hydrogen.PhotonSolitonEmergentConstants set_option autoImplicit false namespace QFD universe u variable {Point : Type u} /-! # Speed of Light Derivation (Hydrodynamic Limit) - Corrected This module proves that 'c' is not a fundamental constant, but a derived property of the vacuum medium's Stiffness (β) and Density (ρ). **Key Improvement**: Explicit bridge hypotheses (no hidden circularity). ## The Logical Chain 1. **Hydrodynamics**: c = √(β/ρ) (sound speed in vacuum) 2. **Geometric Integration**: ℏ = Γ·λ·L₀·c (Scaling Bridge) 3. **Unified Result**: ℏ = (Γ·λ·L₀)·√(β/ρ) → **ℏ ∝ √β** ## Corrected Lean Patterns - Use `simpa [VacuumMedium.sonicVelocity]` instead of `rw [sonic_velocity]` - Avoid `ring` with `Real.sqrt` - use `simp [mul_assoc, mul_comm, mul_left_comm]` - Use `Real.sqrt_div` explicitly for √(a/b) = √a / √b - Make bridge hypotheses explicit (no hidden assumptions) -/ /-- The Hydrodynamic Vacuum. Characterized fundamentally by its mechanical properties. -/ structure VacuumMedium where /-- Bulk Modulus / Stiffness (β). The resistance to shear/compression. -/ β : ℝ /-- Inertial Density (ρ). The mass per unit volume of the field. -/ ρ : ℝ /-- Stiffness must be positive for stability. -/ hβ_pos : β > 0 /-- Density must be positive for inertia. -/ hρ_pos : ρ > 0 namespace VacuumMedium /-- The Sonic Velocity (Sound Speed). Derived from the Newton-Laplace equation for wave propagation: c = √(Stiffness / Density) -/ noncomputable def sonicVelocity (vac : VacuumMedium) : ℝ := Real.sqrt (vac.β / vac.ρ) /-- Stiffness is non-negative. -/ lemma β_nonneg (vac : VacuumMedium) : 0 ≤ vac.β := le_of_lt vac.hβ_pos /-- Density is non-negative. -/ lemma ρ_nonneg (vac : VacuumMedium) : 0 ≤ vac.ρ := le_of_lt vac.hρ_pos /-- Theorem: Sonic Velocity is Positive. Since β > 0 and ρ > 0, the sound speed c = √(β/ρ) > 0. -/ theorem sonic_velocity_pos (vac : VacuumMedium) : vac.sonicVelocity > 0 := by unfold sonicVelocity apply Real.sqrt_pos.mpr apply div_pos · exact vac.hβ_pos · exact vac.hρ_pos /-- Bridge theorem: identify the model's `cVac` with the medium sound speed `√(β/ρ)`. `h_match_beta` is included to make later rewrites convenient; the first statement only needs `h_match_c`. -/ theorem light_is_sound (vac : VacuumMedium) (M : QFDModelStable Point) (h_match_beta : M.toQFDModel.β = vac.β) (h_match_c : M.cVac = vac.sonicVelocity) : M.cVac = Real.sqrt (vac.β / vac.ρ) := by simpa [VacuumMedium.sonicVelocity] using h_match_c /-- Variant exposing the dependence on the *model* parameter β explicitly: cVac = √(M.β/ρ). -/ theorem light_is_sound_model_beta (vac : VacuumMedium) (M : QFDModelStable Point) (h_match_beta : M.toQFDModel.β = vac.β) (h_match_c : M.cVac = vac.sonicVelocity) : M.cVac = Real.sqrt (M.toQFDModel.β / vac.ρ) := by have h : M.cVac = Real.sqrt (vac.β / vac.ρ) := light_is_sound (Point := Point) vac M h_match_beta h_match_c simpa [h_match_beta] using h /-! ## The Grand Unification Theorem: ℏ from β -/ /-- Theorem: Planck's Constant depends on Vacuum Stiffness. If we define ℏ via the EmergentConstants bridge (ℏ = Γ·λ·L₀·cVac), and we define c via the Hydrodynamic Vacuum (c = √(β/ρ)), THEN ℏ is proportional to the square root of stiffness (√β). This implies that a "stiffer" universe would be more "quantum" (larger ℏ). -/ theorem planck_depends_on_stiffness (vac : VacuumMedium) (M : EmergentConstants Point) (h_match_c : M.cVac = vac.sonicVelocity) : M.ℏ = (M.Gamma_vortex * M.lam_mass * M.L_zero) * Real.sqrt (vac.β / vac.ρ) := by -- Start from the bridge definition of ℏ have h := M.h_hbar_match -- Rewrite cVac, then unfold sonicVelocity, then reassociate factors simpa [VacuumMedium.sonicVelocity, h_match_c, mul_assoc, mul_left_comm, mul_comm] using h /-- Corollary: Scaling Law. ℏ ∝ √β (for fixed density ρ) This uses `Real.sqrt_div` to rewrite √(β/ρ) = √β / √ρ. -/ theorem hbar_proportional_sqrt_beta (vac : VacuumMedium) (M : EmergentConstants Point) (h_match_c : M.cVac = vac.sonicVelocity) : ∃ k : ℝ, M.ℏ = k * Real.sqrt vac.β := by refine ⟨(M.Gamma_vortex * M.lam_mass * M.L_zero) / Real.sqrt vac.ρ, ?_⟩ have h0 : M.ℏ = (M.Gamma_vortex * M.lam_mass * M.L_zero) * Real.sqrt (vac.β / vac.ρ) := planck_depends_on_stiffness (Point := Point) vac M h_match_c have hsqrt : Real.sqrt (vac.β / vac.ρ) = Real.sqrt vac.β / Real.sqrt vac.ρ := Real.sqrt_div (β_nonneg vac) vac.ρ calc M.ℏ = (M.Gamma_vortex * M.lam_mass * M.L_zero) * Real.sqrt (vac.β / vac.ρ) := h0 _ = (M.Gamma_vortex * M.lam_mass * M.L_zero) * (Real.sqrt vac.β / Real.sqrt vac.ρ) := by simp [hsqrt] _ = ((M.Gamma_vortex * M.lam_mass * M.L_zero) / Real.sqrt vac.ρ) * Real.sqrt vac.β := by simp [div_eq_mul_inv, mul_assoc, mul_left_comm, mul_comm] /-- Theorem: Speed of Light depends on Stiffness. c ∝ √β (for fixed density ρ) This is the hydrodynamic prediction: stiffer vacuum → faster light. -/ theorem light_proportional_sqrt_beta (vac : VacuumMedium) : ∃ (k : ℝ), vac.sonicVelocity = k * Real.sqrt vac.β := by use (1 / Real.sqrt vac.ρ) unfold sonicVelocity have h_rho_pos : vac.ρ > 0 := vac.hρ_pos have h_rho_ne : vac.ρ ≠ 0 := ne_of_gt h_rho_pos have hsqrt : Real.sqrt (vac.β / vac.ρ) = Real.sqrt vac.β / Real.sqrt vac.ρ := Real.sqrt_div (β_nonneg vac) vac.ρ calc Real.sqrt (vac.β / vac.ρ) = Real.sqrt vac.β / Real.sqrt vac.ρ := hsqrt _ = (1 / Real.sqrt vac.ρ) * Real.sqrt vac.β := by simp [div_eq_mul_inv, mul_comm] /-- Theorem: Unified Scaling. Both c and ℏ scale with √β, establishing a unified dependence on vacuum stiffness. **Physical Interpretation**: - A universe with 2× stiffer vacuum (β → 2β) has: - √2 ≈ 1.41× faster light speed - √2 ≈ 1.41× larger quantum action (ℏ) -/ theorem unified_beta_scaling (vac : VacuumMedium) (M : EmergentConstants Point) (h_match_c : M.cVac = vac.sonicVelocity) : (∃ (k_c : ℝ), M.cVac = k_c * Real.sqrt vac.β) ∧ (∃ (k_h : ℝ), M.ℏ = k_h * Real.sqrt vac.β) := by constructor · -- c ∝ √β have ⟨k, hk⟩ := light_proportional_sqrt_beta vac exact ⟨k, h_match_c.symm ▸ hk⟩ · -- ℏ ∝ √β exact hbar_proportional_sqrt_beta vac M h_match_c /-- If ℏ is treated as fixed (base model) and Γ,λ are fixed inputs, then the inferred L₀ scales inversely with cVac, hence inversely with √(β/ρ). **Physical Interpretation**: Holding ℏ constant while increasing β forces L₀ to decrease. -/ theorem L0_inversely_depends_on_stiffness (vac : VacuumMedium) (M : EmergentConstants Point) (h_match_c : M.cVac = vac.sonicVelocity) : M.L_zero = M.ℏ / (M.Gamma_vortex * M.lam_mass * Real.sqrt (vac.β / vac.ρ)) := by -- From the EmergentConstants layer: L₀ = ℏ / (Γ·λ·cVac) have hL0 := EmergentConstants.vacuum_length_scale_inversion (M := M) -- Substitute cVac = √(β/ρ) and unfold sonicVelocity simpa [VacuumMedium.sonicVelocity, h_match_c, mul_assoc, mul_left_comm, mul_comm] using hL0 end VacuumMedium end QFD