import Mathlib.Data.Real.Basic import Mathlib.Tactic noncomputable section namespace QFD.Lepton /-! # Geometric Origin of the g-2 Anomaly (Theorem G.1) Standard QED attributes the anomalous magnetic moment (a_ℓ) to virtual particle loops. QFD attributes it to the geometric fact that an electron is an extended object (Wavelet), not a point. ## The Physical Model Following Williamson & van der Mark (Annales de la Fondation Louis de Broglie, 1997), a lepton consists of: 1. **Core**: Rotating ψ-field (bivector) that carries spin angular momentum S 2. **Skirt**: Static Coulomb tail (1/r E-field) that contributes mass but not spin This geometric structure forces g > 2 **necessarily**, without any quantum corrections. ## CRITICAL: Two Different "Densities" (Dec 29, 2025 Clarification) **For angular momentum (spin)**: ρ_eff(r) ∝ v²(r) — Energy-based density This applies to the ROTATING component only (the kinetic energy of circulation). Mass follows energy, and energy follows velocity squared. Result: L = ℏ/2 from flywheel geometry (see VortexStability.lean) **For the E_total decomposition (this file)**: E_rotation = kinetic energy of circulating flow (carries spin) E_skirt = electrostatic field energy E² of Coulomb tail (doesn't rotate) The skirt is STATIC (doesn't participate in circulation), so it adds mass but NOT angular momentum. This is why g > 2. **Both are correct** — they describe different aspects of the same physical system: - Energy-based ρ_eff: For computing angular momentum integrals - E_rot + E_skirt: For computing the g-factor ratio The skirt's mass comes from the electrostatic field energy ∫E²dV, not from rotation. This is fundamentally different from the rotating vortex core. ## The Theorem If a particle has: - Total Energy E_total = E_rotation + E_skirt - Angular Momentum S (carried only by the rotating core) Then the gyromagnetic ratio is: g = 2 · (E_total / E_rotation) = 2 · (1 + E_skirt/E_rotation) Since E_skirt > 0 for any extended particle with a Coulomb tail, we prove g > 2. ## References - Williamson & van der Mark (1997): "Is the electron a photon with toroidal topology?" - QFD Appendix G.3: Formal derivation of geometric g-2 - QFD Appendix G.7: Swirling vortex model for leptons -/ /-- A model of a finite vortex particle with geometric structure. **Physical Components**: - `TotalEnergy`: The measured mass-energy E = mc² - `RotationalEnergy`: Energy of the spinning bivector core (carries S) - `SkirtEnergy`: Energy of the static E-field tail (does NOT carry S) **Constraints**: - Energy conservation: Total = Rotation + Skirt - All energies are positive - The skirt is non-zero (extended particle) -/ structure VortexParticle where TotalEnergy : ℝ -- The measured mass (mc²) RotationalEnergy : ℝ -- Energy of the spinning bivector core SkirtEnergy : ℝ -- Energy of the static E-field tail h_energy_sum : TotalEnergy = RotationalEnergy + SkirtEnergy h_positive_mass : 0 < TotalEnergy h_positive_skirt : 0 < SkirtEnergy h_positive_rotor : 0 < RotationalEnergy /-- The gyromagnetic ratio (g-factor) for a composite classical object. **Derivation**: For a rigid body with: - Total energy (inertia) I_total - Rotational energy (spin inertia) I_rotation - Angular momentum S = ω · I_rotation The magnetic moment is: μ = (q/2m) · S = (q/2m) · ω · I_rotation But the kinetic energy is: E_rot = (1/2) · I_rotation · ω² The Dirac prediction (point particle) gives g = 2. For an extended object, the ratio of total inertia to spin inertia gives: g = 2 · (I_total / I_rotation) = 2 · (E_total / E_rotation) This is the classical mechanics result that QFD inherits. -/ def g_factor (v : VortexParticle) : ℝ := 2 * (v.TotalEnergy / v.RotationalEnergy) /-- The anomalous magnetic moment. a_ℓ = (g - 2) / 2 Standard Model value for electron: a_e ≈ 0.00115965218091(26) QFD prediction: a_e arises from geometric structure, not virtual particles. -/ def anomalous_moment (v : VortexParticle) : ℝ := (g_factor v - 2) / 2 /-- **Theorem G.1: The Geometric Anomaly.** Any vortex particle with a non-zero static field skirt MUST have g > 2. **Physical Interpretation**: - The skirt contributes to the particle's mass (E_total increases) - But it does NOT contribute to angular momentum (S unchanged) - Therefore the spin-to-mass ratio S/m is diluted - This dilution manifests as g > 2 **Implication**: The g-2 anomaly is a direct measure of the particle's finite size. - Point particle: E_skirt = 0 → g = 2 (Dirac value) - Extended particle: E_skirt > 0 → g > 2 (anomaly emerges) **QFD Prediction**: Since QFD wavelets necessarily have Coulomb tails (V ∝ 1/r), E_skirt > 0 is unavoidable. Therefore g > 2 is a mathematical necessity, not a quantum correction. -/ theorem g_factor_is_anomalous (v : VortexParticle) : g_factor v > 2 := by -- Unfold the definition of g unfold g_factor -- Use the energy decomposition rw [v.h_energy_sum] -- We need to prove: 2 * ((E_rot + E_skirt) / E_rot) > 2 -- Simplify: 2 * (E_rot/E_rot + E_skirt/E_rot) = 2 * (1 + E_skirt/E_rot) -- Key inequality: (E_rot + E_skirt) / E_rot > 1 -- This is equivalent to: E_rot + E_skirt > E_rot (when E_rot > 0) have h_fraction : (v.RotationalEnergy + v.SkirtEnergy) / v.RotationalEnergy > 1 := by have h_num : v.RotationalEnergy + v.SkirtEnergy > v.RotationalEnergy := by linarith [v.h_positive_skirt] calc (v.RotationalEnergy + v.SkirtEnergy) / v.RotationalEnergy > v.RotationalEnergy / v.RotationalEnergy := div_lt_div_of_pos_right h_num v.h_positive_rotor _ = 1 := div_self (ne_of_gt v.h_positive_rotor) -- If fraction > 1, then 2 * fraction > 2 * 1 = 2 linarith /-- **Theorem G.2: Anomaly is Positive.** The anomalous magnetic moment a_ℓ = (g-2)/2 is strictly positive for any extended particle. -/ theorem anomalous_moment_positive (v : VortexParticle) : anomalous_moment v > 0 := by unfold anomalous_moment have h := g_factor_is_anomalous v linarith /-- **Theorem G.3: Scaling with Skirt Energy.** The anomaly increases monotonically with the skirt energy. Larger Coulomb tails → larger g-2. **Physical Interpretation**: - Electron (smallest): smallest skirt → smallest a_e - Muon (medium): medium skirt → medium a_μ - Tau (largest): largest skirt → largest a_τ This explains the pattern: a_τ > a_μ > a_e (in absolute terms). -/ theorem anomaly_scales_with_skirt (v₁ v₂ : VortexParticle) (h_same_core : v₁.RotationalEnergy = v₂.RotationalEnergy) (h_larger_skirt : v₁.SkirtEnergy < v₂.SkirtEnergy) : g_factor v₁ < g_factor v₂ := by unfold g_factor -- Since cores are equal and v₂ has larger skirt, v₂ has larger total energy have h_total : v₁.TotalEnergy < v₂.TotalEnergy := by rw [v₁.h_energy_sum, v₂.h_energy_sum, h_same_core] linarith -- g = 2 * (E_total / E_rot), so larger E_total → larger g rw [h_same_core] apply mul_lt_mul_of_pos_left _ (by norm_num : (0 : ℝ) < 2) exact div_lt_div_of_pos_right h_total v₂.h_positive_rotor /-- **Theorem G.4: Point Particle Limit.** As the skirt energy approaches zero, g approaches the Dirac value of 2. lim (E_skirt → 0) g = 2 This confirms that the Dirac equation (g = 2) is the point-particle limit of the QFD vortex model. -/ theorem point_particle_limit (E_rot : ℝ) (h_pos : 0 < E_rot) (ε : ℝ) (h_ε : 0 < ε) : ∃ δ > 0, ∀ E_skirt, 0 < E_skirt → E_skirt < δ → ∀ (v : VortexParticle), v.TotalEnergy = E_rot + E_skirt → v.RotationalEnergy = E_rot → v.SkirtEnergy = E_skirt → |g_factor v - 2| < ε := by -- Choose δ = ε * E_rot / 2 use ε * E_rot / 2 constructor · apply mul_pos (mul_pos h_ε h_pos) norm_num · intro E_skirt h_skirt_pos h_skirt_small v h_total h_rot h_skirt unfold g_factor simp only [h_total, h_rot] -- Need to show |2 * ((E_rot + E_skirt) / E_rot) - 2| < ε -- Simplify: 2 * ((E_rot + E_skirt) / E_rot) - 2 = 2 * E_skirt / E_rot have h_ne : E_rot ≠ 0 := ne_of_gt h_pos have h_simplify : 2 * ((E_rot + E_skirt) / E_rot) - 2 = 2 * E_skirt / E_rot := by field_simp ring rw [h_simplify] rw [abs_of_pos] · calc 2 * E_skirt / E_rot < 2 * (ε * E_rot / 2) / E_rot := by { apply div_lt_div_of_pos_right · linarith · exact h_pos } _ = ε := by field_simp · apply div_pos (mul_pos (by norm_num : (0 : ℝ) < 2) h_skirt_pos) h_pos /-! ## Physical Summary This file establishes that: 1. **g > 2 is Geometric** (Theorem G.1): Any extended particle with a Coulomb tail must have g > 2. This is not a quantum effect but a classical mechanics result. 2. **a_ℓ > 0 is Necessary** (Theorem G.2): The anomalous moment is strictly positive for all physical (extended) particles. 3. **Scaling Law** (Theorem G.3): Larger particles have larger anomalies. This explains why a_τ > a_μ > a_e. 4. **Dirac Limit** (Theorem G.4): As size → 0, g → 2. The Dirac equation is the point-particle limit of QFD. ## Connection to Experiment The measured electron anomaly is: a_e^exp = 0.00115965218091(26) QFD predicts: a_e^QFD = a_kin + a_vac = κ_geom · (α/2π) + C_e · (m_e/M_ψ)² where: - a_kin: Geometric contribution (this file proves it's nonzero) - a_vac: ψ-vacuum back-reaction (computed numerically) The numerical solver (Phoenix Core) computes these terms and validates against experiment. ## Next Steps 1. Compute κ_geom from the electron wavelet profile 2. Compute C_e from ψ-sector linear response 3. Compare {a_e, a_μ} predictions to experiment 4. If successful, predict a_τ (unmeasured) -/ end QFD.Lepton