import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic import Mathlib.Analysis.SpecialFunctions.Sqrt import Mathlib.Tactic.Ring import Mathlib.Tactic.FieldSimp import Mathlib.Analysis.Complex.Exponential import Mathlib.RingTheory.RootsOfUnity.Complex import QFD.Lepton.Generations /-! # The Geometric Koide Relation **Status**: ✅ Mathematical Proof Complete (0 sorries) **Purpose**: Rigorously prove that Q = 2/3 follows from the symmetric mass parametrization ## What This Proof Establishes ### QFD Hypothesis (Physical Assumption - NOT proven in Lean) Lepton masses follow the parametrization: ``` m_k = μ(1 + √2·cos(δ + 2πk/3))² for k = 0, 1, 2 ``` where μ is a mass scale and δ is a phase angle. **Status**: Physical hypothesis fitted to experimental lepton masses (δ ≈ 0.222) ### Lean-Verified Mathematical Consequence (Proven) **Main Result**: `theorem koide_relation_is_universal` ``` IF masses satisfy the hypothesis above THEN KoideQ = (Σm_k)/(Σ√m_k)² = 2/3 (exactly) ``` **What this proves**: The Koide quotient Q = 2/3 is a *mathematical necessity* given the parametrization, not a numerical coincidence or empirical fit. **What this does NOT prove**: - That leptons must follow this parametrization (physical claim, not mathematical) - That the parametrization arises from Cl(3,3) geometry (QFD interpretation) - That δ is determined by fundamental principles (it's fitted to data) ## Proven Theorems (0 sorries) 1. **`omega_is_primitive_root`**: ω = exp(2πi/3) is primitive 3rd root of unity 2. **`sum_third_roots_eq_zero`**: 1 + ω + ω² = 0 (from Mathlib) 3. **`sum_cos_symm`**: cos(δ) + cos(δ+2π/3) + cos(δ+4π/3) = 0 4. **`sum_cos_sq_symm`**: cos²(δ) + cos²(δ+2π/3) + cos²(δ+4π/3) = 3/2 5. **`koide_relation_is_universal`**: Parametrization → Q = 2/3 ## Proof Strategy - **Numerator**: Σm_k = 6μ (using trigonometric sum identities) - **Denominator**: (Σ√m_k)² = 9μ (using square root algebra) - **Result**: 6μ/9μ = 2/3 (exact, not approximate) All steps verified in Lean 4 with Mathlib, zero sorries. -/ namespace QFD.Lepton.KoideRelation open QFD.Lepton.Generations open Real open ComplexConjugate /-- The empirical Koide Ratio -/ noncomputable def KoideQ (m1 m2 m3 : ℝ) : ℝ := (m1 + m2 + m3) / (sqrt m1 + sqrt m2 + sqrt m3)^2 def generationIndex (g : GenerationAxis) : ℕ := match g with | .x => 0 | .xy => 1 | .xyz => 2 /-- Geometric Mass Function --/ noncomputable def geometricMass (g : GenerationAxis) (mu delta : ℝ) : ℝ := let k := (generationIndex g : ℝ) let term := 1 + sqrt 2 * cos (delta + k * (2 * Real.pi / 3)) mu * term^2 /-! ## 1. Verified Trig Identities -/ /-- The primitive 3rd root of unity -/ noncomputable def omega : ℂ := Complex.exp (2 * Real.pi * Complex.I / 3) /-- omega is a primitive 3rd root of unity (Mathlib theorem) -/ lemma omega_is_primitive_root : IsPrimitiveRoot omega 3 := by rw [omega] exact Complex.isPrimitiveRoot_exp 3 (by norm_num) /-- Sum of 3rd roots of unity equals zero (Mathlib IsPrimitiveRoot.geom_sum_eq_zero) -/ lemma sum_third_roots_eq_zero : 1 + omega + omega^2 = 0 := by have h := omega_is_primitive_root -- Use Mathlib's theorem about sum of primitive roots have h_sum : (Finset.range 3).sum (fun i => omega ^ i) = 0 := by apply IsPrimitiveRoot.geom_sum_eq_zero h norm_num -- Expand the sum: range 3 = {0, 1, 2} have : (Finset.range 3).sum (fun i => omega ^ i) = omega^0 + omega^1 + omega^2 := by simp only [Finset.sum_range_succ, Finset.sum_range_zero, pow_zero, pow_one] ring rw [this] at h_sum simpa using h_sum /-- Sum of cosines separated by 2π/3 equals zero (from roots of unity) -/ lemma sum_cos_symm (delta : ℝ) : cos delta + cos (delta + 2*Real.pi/3) + cos (delta + 4*Real.pi/3) = 0 := by -- Strategy: Use Euler's formula cos(x) = Re(exp(ix)) -- Then: sum of cosines = Re(sum of exponentials) = Re(exp(iδ)(1 + ω + ω²)) = Re(0) = 0 -- Step 1: Euler's formula have h_cos_formula : ∀ x : ℝ, Real.cos x = (Complex.exp (Complex.I * x)).re := by intro x -- Real.cos x = (Complex.cos ↑x).re by definition conv_lhs => rw [show Real.cos x = (Complex.cos x).re from rfl] -- Complex.cos z = (exp(I*z) + exp(-I*z))/2 rw [Complex.cos, mul_comm] -- Now: ((exp(Complex.I * ↑x) + exp(-↑x * Complex.I)) / 2).re = (exp(Complex.I * ↑x)).re -- Key: for real x, exp(-x*I) = conj(exp(x*I)), so (exp(x*I) + conj(exp(x*I)))/2 has Re = Re(exp(x*I)) have h_conj : Complex.exp (-↑x * Complex.I) = conj (Complex.exp (↑x * Complex.I)) := by rw [← Complex.exp_conj] congr 1 simp [Complex.conj_ofReal, Complex.conj_I] rw [h_conj, mul_comm Complex.I] -- Re((z + conj(z))/2) = Re(z) simp [Complex.add_re, Complex.conj_re, Complex.div_re] -- Step 2: The complex sum equals zero (from roots of unity) ✅ PROVEN have h_complex_zero : Complex.exp (Complex.I * delta) + Complex.exp (Complex.I * (delta + 2*Real.pi/3)) + Complex.exp (Complex.I * (delta + 4*Real.pi/3)) = 0 := by -- This equals exp(iδ) * (1 + ω + ω²) = exp(iδ) * 0 = 0 have h_factor : Complex.exp (Complex.I * delta) * (1 + omega + omega^2) = Complex.exp (Complex.I * delta) + Complex.exp (Complex.I * (delta + 2*Real.pi/3)) + Complex.exp (Complex.I * (delta + 4*Real.pi/3)) := by rw [omega, mul_add, mul_add, mul_one] congr 1 · -- exp(iδ) * exp(2πi/3) = exp(i(δ + 2π/3)) ✅ PROVEN rw [← Complex.exp_add] congr 1 push_cast ring_nf · -- exp(iδ) * exp(2πi/3)² = exp(i(δ + 4π/3)) ✅ PROVEN rw [sq, mul_comm, mul_assoc, ← Complex.exp_add, ← Complex.exp_add] congr 1 push_cast ring_nf rw [← h_factor, sum_third_roots_eq_zero, mul_zero] -- Uses Mathlib roots of unity ✅ -- Step 3: Connect via real parts rw [h_cos_formula delta, h_cos_formula (delta + 2*Real.pi/3), h_cos_formula (delta + 4*Real.pi/3)] rw [← Complex.add_re, ← Complex.add_re] -- Need to show: (exp(I*↑delta) + exp(I*↑(delta+2π/3)) + exp(I*↑(delta+4π/3))).re = 0 -- This follows from h_complex_zero by ofReal_add: ↑(a+b) = ↑a + ↑b rw [show Complex.I * ↑(delta + 2*Real.pi/3) = Complex.I * (delta + 2*Real.pi/3) by simp [Complex.ofReal_add]] rw [show Complex.I * ↑(delta + 4*Real.pi/3) = Complex.I * (delta + 4*Real.pi/3) by simp [Complex.ofReal_add]] rw [h_complex_zero] simp /-- Sum of squared cosines at symmetric angles equals 3/2. This is the key algebraic step for proving the Koide relation. Uses double-angle formula cos²x = (1 + cos(2x))/2 and sum_cos_symm. -/ lemma sum_cos_sq_symm (δ : ℝ) : cos δ ^ 2 + cos (δ + 2*π/3) ^ 2 + cos (δ + 4*π/3) ^ 2 = 3/2 := by -- Apply double-angle formula to each term rw [cos_sq δ, cos_sq (δ + 2*π/3), cos_sq (δ + 4*π/3)] -- Normalize angles: 2*(δ + 2π/3) = 2*δ + 4*π/3 and 2*(δ + 4*π/3) = 2*δ + 8*π/3 have h1 : (2:ℝ) * (δ + 2*π/3) = 2*δ + 4*π/3 := by ring have h2 : (2:ℝ) * (δ + 4*π/3) = 2*δ + 8*π/3 := by ring rw [h1, h2] -- Use periodicity: cos(2δ + 8π/3) = cos(2δ + 2π/3) since 8π/3 - 2π = 2π/3 have sum_cos_zero : cos (2*δ) + cos (2*δ + 4*π/3) + cos (2*δ + 8*π/3) = 0 := by have h_period : cos (2*δ + 8*π/3) = cos (2*δ + 2*π/3) := by have : (2:ℝ)*δ + 8*π/3 = 2*δ + 2*π/3 + 2*π := by ring rw [this, cos_add_two_pi] calc cos (2*δ) + cos (2*δ + 4*π/3) + cos (2*δ + 8*π/3) = cos (2*δ) + cos (2*δ + 4*π/3) + cos (2*δ + 2*π/3) := by rw [h_period] _ = cos (2*δ) + cos (2*δ + 2*π/3) + cos (2*δ + 4*π/3) := by ring _ = 0 := sum_cos_symm (2*δ) -- Final algebraic simplification: combine fractions and apply sum_cos_zero calc 1 / 2 + cos (2 * δ) / 2 + (1 / 2 + cos (2 * δ + 4 * π / 3) / 2) + (1 / 2 + cos (2 * δ + 8 * π / 3) / 2) = (1 + 1 + 1 + cos (2*δ) + cos (2*δ + 4*π/3) + cos (2*δ + 8*π/3)) / 2 := by ring _ = (3 + (cos (2*δ) + cos (2*δ + 4*π/3) + cos (2*δ + 8*π/3))) / 2 := by ring _ = (3 + 0) / 2 := by rw [sum_cos_zero] _ = 3 / 2 := by norm_num /-- **Theorem: Koide Quotient from Symmetric Mass Parametrization** **QFD Hypothesis (assumed, not proven)**: Lepton masses follow the parametrization: m_k = μ(1 + √2·cos(δ + 2πk/3))² for k = 0, 1, 2 **Mathematical Consequence (proven in this theorem)**: Given the parametrization above, the Koide quotient Q = 2/3 exactly. **What this proves**: Q = 2/3 is mathematically necessary given the parametrization, not a numerical coincidence or empirical parameter. **What this does NOT prove**: - That leptons must follow this parametrization (physical claim) - That the parametrization arises from Cl(3,3) geometry (QFD interpretation) - That δ is determined by fundamental principles (δ ≈ 0.222 is fitted to data) **Proof strategy**: - Numerator: Σm_k = μ·[3 + 2√2·Σcos θ_k + 2·Σcos²θ_k] = μ·[3 + 0 + 3] = 6μ - Denominator: (Σ√m_k)² = (√μ·[3 + √2·Σcos θ_k])² = (3√μ)² = 9μ - Result: Q = 6μ/9μ = 2/3 **Parameters**: - `mu` : mass scale (must be positive) - `delta` : phase angle (empirically δ ≈ 0.222 for leptons) - `h_pos0, h_pos1, h_pos2` : positivity requirements for square root extraction -/ theorem koide_relation_is_universal (mu delta : ℝ) (h_mu : mu > 0) (h_pos0 : 1 + sqrt 2 * cos delta > 0) (h_pos1 : 1 + sqrt 2 * cos (delta + 2 * π / 3) > 0) (h_pos2 : 1 + sqrt 2 * cos (delta + 4 * π / 3) > 0) : let m_e := geometricMass .x mu delta let m_mu := geometricMass .xy mu delta let m_tau := geometricMass .xyz mu delta KoideQ m_e m_mu m_tau = 2/3 := by unfold KoideQ geometricMass generationIndex simp only [Nat.cast_zero, Nat.cast_one, Nat.cast_ofNat, zero_mul, add_zero] -- Trig identities have h_sum_cos := sum_cos_symm delta have h_sum_cos_sq := sum_cos_sq_symm delta -- Abbreviations let c0 := cos delta let c1 := cos (delta + 2 * π / 3) let c2 := cos (delta + 4 * π / 3) -- Expand (1 + √2*c)² have h_sq : ∀ c, (1 + sqrt 2 * c)^2 = 1 + 2 * sqrt 2 * c + 2 * c^2 := by intro c have : sqrt 2 ^ 2 = 2 := Real.sq_sqrt (by norm_num) ring_nf; rw [this]; ring -- NUMERATOR = 6μ (geometric cancellation proof) have h_num : mu * (1 + sqrt 2 * c0)^2 + mu * (1 + sqrt 2 * c1)^2 + mu * (1 + sqrt 2 * c2)^2 = 6 * mu := by simp only [h_sq] calc mu * (1 + 2 * sqrt 2 * c0 + 2 * c0^2) + mu * (1 + 2 * sqrt 2 * c1 + 2 * c1^2) + mu * (1 + 2 * sqrt 2 * c2 + 2 * c2^2) = mu * (3 + 2 * sqrt 2 * (c0 + c1 + c2) + 2 * (c0^2 + c1^2 + c2^2)) := by ring -- Geometric cancellation: the linear sum (c0 + c1 + c2) = 0 (vectors sum to zero) _ = mu * (3 + 2 * sqrt 2 * 0 + 2 * (3/2)) := by rw [h_sum_cos] -- Apply sum_cos_symm: cross-terms cancel rw [h_sum_cos_sq] -- Apply sum_cos_sq_symm: quadratic terms sum to 3/2 -- Simplify: 0 from linear terms, 3 from quadratic terms _ = mu * (3 + 0 + 2 * (3/2)) := by ring _ = mu * (3 + 3) := by ring _ = mu * 6 := by ring _ = 6 * mu := by ring -- DENOMINATOR = 9μ have h_den : (sqrt (mu * (1 + sqrt 2 * c0)^2) + sqrt (mu * (1 + sqrt 2 * c1)^2) + sqrt (mu * (1 + sqrt 2 * c2)^2))^2 = 9 * mu := by have h_sqrt : ∀ c, 1 + sqrt 2 * c > 0 → sqrt (mu * (1 + sqrt 2 * c)^2) = sqrt mu * (1 + sqrt 2 * c) := by intro c hc rw [Real.sqrt_mul (le_of_lt h_mu), Real.sqrt_sq (le_of_lt hc)] rw [h_sqrt c0 h_pos0, h_sqrt c1 h_pos1, h_sqrt c2 h_pos2] have h_sum : sqrt mu * (1 + sqrt 2 * c0) + sqrt mu * (1 + sqrt 2 * c1) + sqrt mu * (1 + sqrt 2 * c2) = 3 * sqrt mu := by calc sqrt mu * (1 + sqrt 2 * c0) + sqrt mu * (1 + sqrt 2 * c1) + sqrt mu * (1 + sqrt 2 * c2) = sqrt mu * (3 + sqrt 2 * (c0 + c1 + c2)) := by ring _ = sqrt mu * (3 + sqrt 2 * 0) := by rw [h_sum_cos] _ = sqrt mu * 3 := by ring _ = 3 * sqrt mu := by ring rw [h_sum] have : (sqrt mu)^2 = mu := Real.sq_sqrt (le_of_lt h_mu) calc (3 * sqrt mu)^2 = 9 * (sqrt mu)^2 := by ring _ = 9 * mu := by rw [this] -- FINAL: Q = 6μ / 9μ = 2/3 -- The goal uses explicit cosines; simplify angle coefficients first have ha1 : (1:ℝ) * (2 * π / 3) = 2 * π / 3 := by ring have ha2 : (2:ℝ) * (2 * π / 3) = 4 * π / 3 := by ring simp only [ha1, ha2] -- Now the goal matches our c0, c1, c2 abbreviations rw [h_num, h_den] field_simp norm_num end QFD.Lepton.KoideRelation