import Mathlib import QFD.Physics.Postulates import QFD.Hydrogen.PhotonSolitonEmergentConstants import QFD.Lepton.IsomerCore import Mathlib.Data.Real.Basic import Mathlib.Tactic.Linarith set_option autoImplicit false namespace QFD universe u variable {Point : Type u} /-! # Lepton Isomers: The Geometric Origin of Mass This module builds on IsomerCore.lean to provide theorems about lepton stability, mass generation, and decay mechanisms. ## The Isomer Hypothesis 1. The Hill Vortex has internal structure defined by RMS charge density Q*. 2. Only specific Q* values are stable in a β≈3.043 vacuum. 3. These stable Q* values correspond to the Lepton Generations. ## The Three Lepton Isomers (defined in IsomerCore.lean) - **Electron** (e⁻): Q* ≈ 2.2 (Ground State, Stable) - **Muon** (μ⁻): Q* ≈ 2.3 (First Excitation, Metastable) - **Tau** (τ⁻): Q* >> 1 (High Excitation, Unstable) -/ namespace LeptonModel /-! ## Theorems about Lepton Structure -/ /-- Theorem: Electron vs muon winding gap. The Q* of an electron is strictly less than that of a muon. This is a direct consequence of their disjoint stability intervals. -/ theorem electron_muon_qstar_gap (M : LeptonModel Point) (e μ : Config) (h_e : IsElectron M e) (h_μ : IsMuon M μ) : M.Q_star e < M.Q_star μ := by -- Electron: Q* ∈ (2.1, 2.25), Muon: Q* ∈ [2.25, 2.4) have he_ub : M.Q_star e < 2.25 := h_e.2.2.1 have hmu_lb : M.Q_star μ ≥ 2.25 := h_μ.2.1 linarith /-- Theorem: Muon vs tau winding gap. The Q* of a muon is strictly less than that of a tau. -/ theorem muon_tau_qstar_gap (M : LeptonModel Point) (μ τ : Config) (h_μ : IsMuon M μ) (h_τ : IsTau M τ) : M.Q_star μ < M.Q_star τ := by -- Muon: Q* < 2.4, Tau: Q* > 1000 have hmu_ub : M.Q_star μ < 2.4 := h_μ.2.2.1 have htau_lb : M.Q_star τ > 1000 := h_τ.2.1 linarith /-! ## Decay Definitions -/ /-- Definition: Decay relation. A parent decays to a daughter if the parent has higher Q* (more stress). -/ def DecaysTo (M : LeptonModel Point) (parent daughter : Config) : Prop := M.Q_star parent > M.Q_star daughter /-- Definition: Muon decay to electron. The muon relaxes to the electron state (lower Q*). -/ def MuonDecay (M : LeptonModel Point) (μ e : Config) : Prop := IsMuon M μ ∧ IsElectron M e ∧ DecaysTo M μ e /-- Theorem: Muon can decay to electron. This follows from the Q* ordering: μ has higher Q* than e. -/ theorem muon_decays_to_electron (M : LeptonModel Point) (μ e : Config) (h_μ : IsMuon M μ) (h_e : IsElectron M e) : MuonDecay M μ e := by refine ⟨h_μ, h_e, ?_⟩ have h := electron_muon_qstar_gap M e μ h_e h_μ exact h /-- Theorem: Tau can decay to muon. This follows from the Q* ordering: τ has higher Q* than μ. -/ theorem tau_decays_to_muon (M : LeptonModel Point) (τ μ : Config) (h_τ : IsTau M τ) (h_μ : IsMuon M μ) : DecaysTo M τ μ := by have h := muon_tau_qstar_gap M μ τ h_μ h_τ exact h /-- Theorem: Tau can decay to electron. Transitivity: τ > μ > e in Q* ordering. -/ theorem tau_decays_to_electron (M : LeptonModel Point) (τ e : Config) (h_τ : IsTau M τ) (h_e : IsElectron M e) : DecaysTo M τ e := by unfold DecaysTo have he_ub : M.Q_star e < 2.25 := h_e.2.2.1 have htau_lb : M.Q_star τ > 1000 := h_τ.2.1 -- Q_star τ > 1000 > 2.25 > Q_star e linarith end LeptonModel end QFD