import Mathlib import QFD.Hydrogen.PhotonSolitonStable set_option autoImplicit false namespace QFD universe u variable {Point : Type u} /-! # QBallStructure A Lean-robust (discrete/lattice) formalization of the QFD Q-ball story. We model the particle interior as `n` vacuum grid cells indexed by `Fin n`. This lets us prove the key logical implications without bringing in PDE existence theory or measure-theory integrals. Main statements delivered: * `electron_is_cavitation`: if charge = -1 (and κ > 0), then some cell has ρ < ρ_vac. * `proton_is_compression`: if charge = +1 (and κ > 0), then some cell has ρ > ρ_vac. * `stability_predicts_scale_cubed`: if centrifugal = elastic, then scale^3 = (Q*^2)/β. All proofs are elementary order/algebra over ℝ. -/ /-- A discrete particle configuration (vacuum grid cells). -/ structure QBallConfig (n : ℕ) where /-- Cellwise density ρ_i. -/ density : Fin n → ℝ /-- Cellwise local time-flow factor τ_i. -/ timeFlow : Fin n → ℝ /-- Net charge tag (ℤ). -/ charge : ℤ /-- A macroscopic scale (radius) used in the toy force-balance model. -/ scale : ℝ /-- Effective spin/rotor amplitude Q*. -/ Q_star : ℝ /-- We require positive scale so division is safe. -/ h_scale_pos : scale > 0 /-- A Q-ball model adds "density/charge/time" axioms on top of `QFDModelStable`. * `κ_charge` is a positive proportionality factor mapping density deviation to the numeric charge tag. * The discrete "integral" is `∑ i, (ρ_i - ρ_vac)`. -/ structure QBallModel (Point : Type u) extends QFDModelStable Point where n : ℕ rho_vac : ℝ κ_charge : ℝ h_κ_pos : κ_charge > 0 /-- Axiom: time is inverse density (cellwise). -/ time_is_inverse_density : ∀ (c : QBallConfig n) (i : Fin n), c.timeFlow i * c.density i = 1 /-- Axiom: charge is scaled total density deviation from the vacuum. -/ charge_is_density_contrast : ∀ (c : QBallConfig n), (c.charge : ℝ) = κ_charge * (∑ i : Fin n, (c.density i - rho_vac)) namespace QBallModel variable {M : QBallModel Point} /-- The discrete total density deviation Σ(ρ_i - ρ_vac). -/ def densityDeviationSum (c : QBallConfig M.n) : ℝ := ∑ i : Fin M.n, (c.density i - M.rho_vac) /-- Helper: rewrite the charge axiom in terms of `densityDeviationSum`. -/ lemma charge_eq_kappa_mul_dev (c : QBallConfig M.n) : (c.charge : ℝ) = M.κ_charge * densityDeviationSum (M := M) c := by simpa [densityDeviationSum] using M.charge_is_density_contrast c /-- Solve the charge-density relation for the deviation sum. -/ lemma densityDeviationSum_eq_charge_div (c : QBallConfig M.n) : densityDeviationSum (M := M) c = (c.charge : ℝ) / M.κ_charge := by have hk_ne : (M.κ_charge : ℝ) ≠ 0 := ne_of_gt M.h_κ_pos -- Start from the axiom and rearrange. have hmul : (c.charge : ℝ) = M.κ_charge * densityDeviationSum (M := M) c := charge_eq_kappa_mul_dev (M := M) c -- Convert to `dev * κ = charge` to use `eq_div_iff`. have hmul' : densityDeviationSum (M := M) c * M.κ_charge = (c.charge : ℝ) := by -- commutativity of multiplication in ℝ simpa [mul_comm, mul_left_comm, mul_assoc] using hmul.symm exact (eq_div_iff hk_ne).2 hmul' /-- Core lemma: if the total deviation sum is negative, then some cell must be below vacuum density. -/ lemma exists_density_lt_vac_of_dev_neg (c : QBallConfig M.n) (hneg : densityDeviationSum (M := M) c < 0) : ∃ i : Fin M.n, c.density i < M.rho_vac := by classical by_contra h -- Push negation inward: all cells are ≥ rho_vac. have hge : ∀ i : Fin M.n, M.rho_vac ≤ c.density i := by -- `h : ¬ ∃ i, density i < rho_vac` -- Push_neg converts this to: ∀ i, rho_vac ≤ density i push_neg at h exact h -- Then each term (density i - rho_vac) is ≥ 0, hence the sum is ≥ 0. have hsum_nonneg : 0 ≤ densityDeviationSum (M := M) c := by unfold densityDeviationSum refine Finset.sum_nonneg ?_ intro i hi exact sub_nonneg.mpr (hge i) linarith /-- Core lemma: if the total deviation sum is positive, then some cell must be above vacuum density. -/ lemma exists_density_gt_vac_of_dev_pos (c : QBallConfig M.n) (hpos : 0 < densityDeviationSum (M := M) c) : ∃ i : Fin M.n, M.rho_vac < c.density i := by classical by_contra h -- Push negation inward: all cells are ≤ rho_vac. have hle : ∀ i : Fin M.n, c.density i ≤ M.rho_vac := by -- Push_neg converts ¬ ∃ i, rho_vac < density i to: ∀ i, density i ≤ rho_vac push_neg at h exact h -- Then each term (density i - rho_vac) is ≤ 0, hence the sum is ≤ 0. have hsum_nonpos : densityDeviationSum (M := M) c ≤ 0 := by unfold densityDeviationSum refine Finset.sum_nonpos ?_ intro i hi exact sub_nonpos.mpr (hle i) linarith /-- Electron theorem (cavitation): charge = -1 forces some cell to satisfy ρ < ρ_vac. This is the discrete analogue of: if ∫(ρ-ρ_vac) dV < 0 then ∃x, ρ(x) < ρ_vac. -/ theorem electron_is_cavitation (c : QBallConfig M.n) (h_charge : c.charge = -1) : ∃ i : Fin M.n, c.density i < M.rho_vac := by -- Use the charge-density relation to show the deviation sum is negative. have hdev : densityDeviationSum (M := M) c = (c.charge : ℝ) / M.κ_charge := densityDeviationSum_eq_charge_div (M := M) c have hk_pos : (0 : ℝ) < M.κ_charge := M.h_κ_pos have hdev_neg : densityDeviationSum (M := M) c < 0 := by -- substitute charge = -1 have : (c.charge : ℝ) = (-1 : ℝ) := by simpa [h_charge] -- dev = (-1)/κ, κ>0 => dev<0 simpa [hdev, this] using (div_neg_of_neg_of_pos (show (-1 : ℝ) < 0 by linarith) hk_pos) exact exists_density_lt_vac_of_dev_neg (M := M) c hdev_neg /-- Proton theorem (compression): charge = +1 forces some cell to satisfy ρ > ρ_vac. We prove it by applying the compression lemma to the positive deviation. -/ theorem proton_is_compression (c : QBallConfig M.n) (h_charge : c.charge = 1) : ∃ i : Fin M.n, M.rho_vac < c.density i := by classical -- First show the deviation sum is positive. have hdev : densityDeviationSum (M := M) c = (c.charge : ℝ) / M.κ_charge := densityDeviationSum_eq_charge_div (M := M) c have hk_pos : (0 : ℝ) < M.κ_charge := M.h_κ_pos have hdev_pos : 0 < densityDeviationSum (M := M) c := by have : (c.charge : ℝ) = (1 : ℝ) := by simpa [h_charge] simpa [hdev, this] using (div_pos (show (0 : ℝ) < (1 : ℝ) by linarith) (show (0 : ℝ) < M.κ_charge from hk_pos)) -- Positive total deviation forces at least one cell above ρ_vac. exact exists_density_gt_vac_of_dev_pos (M := M) c hdev_pos /-! ## Mechanical stability (toy force balance) We keep the same algebraic structure you proposed: * F_out = (Q*^2) / R * F_in = β * R^2 Balance implies R^3 = (Q*^2)/β. -/ /-- Outward (centrifugal) force proxy. -/ noncomputable def centrifugalForce (c : QBallConfig M.n) : ℝ := (c.Q_star ^ 2) / c.scale /-- Inward (elastic) force proxy. -/ noncomputable def elasticForce (c : QBallConfig M.n) : ℝ := M.toQFDModel.β * (c.scale ^ 2) /-- Mechanical stability = force balance. -/ def IsMechanicallyStable (c : QBallConfig M.n) : Prop := centrifugalForce (M := M) c = elasticForce (M := M) c /-- Balance law in cubed form: If (Q*^2)/R = β R^2 and R>0 and β≠0, then R^3 = (Q*^2)/β. This is the algebraic heart of the "size from stiffness" claim. You can choose later whether to rewrite it as `R = Real.cbrt ((Q*^2)/β)`. -/ theorem stability_predicts_scale_cubed (c : QBallConfig M.n) (hβ_ne : M.toQFDModel.β ≠ 0) (h_stable : IsMechanicallyStable (M := M) c) : c.scale ^ 3 = (c.Q_star ^ 2) / M.toQFDModel.β := by have hR_ne : c.scale ≠ 0 := ne_of_gt c.h_scale_pos -- Start from stability and clear denominators. have h1 : (c.Q_star ^ 2) = M.toQFDModel.β * (c.scale ^ 3) := by -- From: (Q^2)/R = β*R^2 -- Multiply both sides by R: have := congrArg (fun t => t * c.scale) h_stable -- simplify unfold IsMechanicallyStable centrifugalForce elasticForce at this -- Left becomes (Q^2)/R * R = Q^2 -- Right becomes (β*R^2)*R = β*R^3 field_simp [hR_ne] at this -- After field_simp, `this` is the desired identity (maybe up to commutativity). -- Normalize multiplicative order. simpa [mul_assoc, mul_left_comm, mul_comm, pow_succ] using this -- Divide both sides by β. -- h1.symm has the exact content we need up to commutativity: -- β * (c.scale^3) = c.Q_star^2 -- We rewrite it into the `eq_div_iff` form. exact (eq_div_iff hβ_ne).2 (by -- Need: (c.scale^3) * β = c.Q_star^2 simpa [mul_comm, mul_left_comm, mul_assoc] using h1.symm) end QBallModel end QFD