import Mathlib set_option autoImplicit false namespace QFD /-! # Stability Constraints (The Factorization Guardrail) This module formally proves why simple energy functionals of the form: E(Q, R) = g(Q) * f(R) CANNOT produce a discrete mass spectrum (multiple stable isomers). ## The Physics Insight If the topology (Q) and geometry (R) factorize, then: 1. The optimal radius R* is independent of Q. 2. The minimal energy E_min(Q) scales monotonically with g(Q). 3. Therefore, no discrete local minima exist in Q-space. ## Conclusion To get a Lepton Spectrum, the physics MUST introduce non-factorizable terms (e.g., Q-dependent stiffness β(Q) or topological closure terms). -/ /-- A Factorizable Energy Functional. E(q, r) = g(q) * f(r) For physics applications, both Q (topological charge) and R (radius) are real-valued. -/ def FactorizableEnergy (g : ℝ → ℝ) (f : ℝ → ℝ) (q : ℝ) (r : ℝ) : ℝ := g q * f r /-- Theorem: Independence of Radius. For a factorizable energy, the minimizing radius r* is the same for all q (assuming g(q) ≠ 0). -/ theorem radius_independence (g : ℝ → ℝ) (f : ℝ → ℝ) (r_star : ℝ) (h_min_f : IsMinOn f Set.univ r_star) -- r_star minimizes f globally (q : ℝ) (hq : 0 < g q) : -- g(q) is positive (scaling factor) IsMinOn (FactorizableEnergy g f q) Set.univ r_star := by -- Logic: E(q, r) = g(q) * f(r) -- Since g(q) > 0, minimizing g(q)*f(r) is equivalent to minimizing f(r). intro r _ unfold FactorizableEnergy -- We know f(r_star) ≤ f(r) have h_f_ineq : f r_star ≤ f r := h_min_f (Set.mem_univ r) -- Multiply by positive g(q) exact mul_le_mul_of_nonneg_left h_f_ineq (le_of_lt hq) /-- Theorem: Monotonicity of Spectrum. If E(q, r) factorizes, and g(q) is monotonic (e.g. q^2), then the particle mass E_min(q) is strictly monotonic. IMPLICATION: No "islands of stability" (Isomers) can exist. -/ theorem spectrum_monotonicity (g : ℝ → ℝ) (f : ℝ → ℝ) (r_star : ℝ) (h_min_f : IsMinOn f Set.univ r_star) (h_f_pos : 0 < f r_star) -- The vacuum shape has positive energy (q1 q2 : ℝ) (h_mono_g : g q1 < g q2) : -- g is strictly monotonic (e.g. q1 < q2 -> q1^2 < q2^2) FactorizableEnergy g f q1 r_star < FactorizableEnergy g f q2 r_star := by unfold FactorizableEnergy exact mul_lt_mul_of_pos_right h_mono_g h_f_pos end QFD