import Mathlib set_option autoImplicit false namespace QFD /-! # AlphaFormFactor This module formalizes the "α gap" as a geometric form-factor problem. We keep the physics honest by separating: - α_meas : the measured fine-structure constant (or any target value) - α_cont : the continuum / Euclidean-flux prediction - κ_spin : a positive correction factor encoding spin-bundle (double-cover) effects We then define the corrected prediction: - α_corr = α_cont / κ_spin The key theorems show: 1. The residual between α_cont and α_meas is exactly representable as κ_spin. 2. If κ_spin is computed correctly (from spinor-bundle geometry), the gap closes. Nothing here asserts what κ_spin numerically is; that is a separate geometric computation (typically performed numerically, then later replaced by an analytic derivation). -/ universe u variable {Point : Type u} /-- Relative error: |pred / target - 1|. -/ noncomputable def relErr (target pred : ℝ) : ℝ := abs (pred / target - 1) /-- Alpha model with an explicit spinor/topology correction factor. We attach this to `EmergentConstants` because in your book the α formula is built on top of the (c, ℏ) layer. -/ structure AlphaFormFactor (Point : Type u) extends QFD.EmergentConstants Point where /-- Measured (or reference) fine-structure constant. -/ α_meas : ℝ /-- Continuum (classical-flux) prediction for α. -/ α_cont : ℝ h_cont_ne_zero : α_cont ≠ 0 /-- Spinor / topology correction factor (geometric form factor). -/ κ_spin : ℝ h_meas_ne_zero : α_meas ≠ 0 h_k_pos : κ_spin > 0 namespace AlphaFormFactor variable {A : AlphaFormFactor Point} /-- Corrected prediction for α after applying the spinor form factor. -/ noncomputable def α_corr (A : AlphaFormFactor Point) : ℝ := A.α_cont / A.κ_spin /-- Algebraic identity: the corrected relative error depends only on the ratio r = α_cont / α_meas and the factor κ_spin. -/ theorem relErr_corr_eq (A : AlphaFormFactor Point) : relErr A.α_meas (A.α_corr) = abs ((A.α_cont / A.α_meas) / A.κ_spin - 1) := by unfold relErr AlphaFormFactor.α_corr have h : (A.α_cont / A.κ_spin) / A.α_meas - 1 = (A.α_cont / A.α_meas) / A.κ_spin - 1 := by ring -- abs preserves equality of the inner term rw [h] /-- If the geometric factor equals the continuum-to-measured ratio, the gap closes exactly: α_corr = α_meas. This is the formal statement of "the α gap is a form factor". -/ theorem gap_closes_if_kappa_matches_ratio (hκ : A.κ_spin = A.α_cont / A.α_meas) : A.α_corr = A.α_meas := by unfold AlphaFormFactor.α_corr rw [hκ] field_simp [A.h_meas_ne_zero, A.h_cont_ne_zero] /-- Relative-error bound: if κ_spin approximates the required ratio, the corrected α has proportionally small relative error. Let r = α_cont / α_meas. Then α_corr / α_meas - 1 = (r - κ_spin) / κ_spin. So if |r - κ_spin| ≤ ε · |κ_spin|, then relErr ≤ ε. -/ theorem relErr_corr_le_of_kappa_close (ε : ℝ) (hε : 0 ≤ ε) (h_close : abs (A.α_cont / A.α_meas - A.κ_spin) ≤ ε * abs A.κ_spin) : relErr A.α_meas (A.α_corr) ≤ ε := by have hκ_ne_zero : A.κ_spin ≠ 0 := ne_of_gt A.h_k_pos have hκ_abs_pos : 0 < abs A.κ_spin := abs_pos.mpr hκ_ne_zero -- Rewrite relErr into the (r - κ)/κ form unfold relErr AlphaFormFactor.α_corr have : A.α_cont / A.κ_spin / A.α_meas - 1 = (A.α_cont / A.α_meas - A.κ_spin) / A.κ_spin := by -- Use 1 = κ/κ and common denominator calc A.α_cont / A.κ_spin / A.α_meas - 1 = (A.α_cont / A.α_meas) / A.κ_spin - 1 := by ring _ = (A.α_cont / A.α_meas) / A.κ_spin - A.κ_spin / A.κ_spin := by simp [hκ_ne_zero] _ = (A.α_cont / A.α_meas - A.κ_spin) / A.κ_spin := by ring -- Apply absolute value and divide bound -- |(r-κ)/κ| = |r-κ| / |κ| have habs : abs (A.α_cont / A.κ_spin / A.α_meas - 1) = abs (A.α_cont / A.α_meas - A.κ_spin) / abs A.κ_spin := by simp [this, abs_div] -- Now use h_close and divide both sides by |κ| > 0 have h_div : abs (A.α_cont / A.α_meas - A.κ_spin) / abs A.κ_spin ≤ (ε * abs A.κ_spin) / abs A.κ_spin := by exact (div_le_div_right hκ_abs_pos).mpr h_close -- Simplify RHS to ε have h_rhs : (ε * abs A.κ_spin) / abs A.κ_spin = ε := by field_simp [hκ_ne_zero] -- Finish simpa [habs, h_rhs] using h_div end AlphaFormFactor end QFD