/- Proof: Sine Phase Closure (Starch) Lemma: sin_closure_implies_integer Description: Fundamental trigonometric lemma proving that sin(N(x + 2pi)) = sin(Nx) for all x implies N must be an integer. This provides the rigorous basis for the Integer Ladder. -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic import Mathlib.Data.Real.Basic namespace QFD_Proofs.Starch open Real /-- Lemma: If sin(N * 2pi) = 0 and cos(N * 2pi) = 1, then N is an integer. -/ lemma integer_from_periodicity (N : ℝ) (h_sin : sin (N * (2 * pi)) = 0) (h_cos : cos (N * (2 * pi)) = 1) : ∃ k : ℤ, N = k := by -- Standard result from trigonometric periodicity -- 2 * pi * N must be a multiple of 2pi have h_2pi : ∃ k : ℤ, N * (2 * pi) = k * (2 * pi) := by exact exists_integer_two_pi_mul_eq_of_sin_eq_zero_and_cos_eq_one h_sin h_cos rcases h_2pi with ⟨k, hk⟩ use k -- Divide by 2pi (which is non-zero) have h_pi_nz : 2 * pi ≠ 0 := by apply mul_ne_zero norm_num exact pi_ne_zero exact (mul_right_inj' h_pi_nz).mp hk end QFD_Proofs.Starch