import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Analysis.SpecialFunctions.Sqrt import Mathlib.Data.Real.Basic import Mathlib.Tactic /-! # QFD: Spectral Gap Bounds from Geometry **Subject**: Proving bounds on the spectral gap from geometric constraints **Reference**: SpectralGap.lean (dynamical gap) and VacuumParameters.lean This module provides rigorous bounds on the spectral gap Δ that appear in QFD's dimensional reduction argument. The spectral gap is the energy cost of exciting modes that would reveal extra dimensions. ## Physical Context The spectral gap Δ sets the energy scale below which extra dimensions are suppressed. In QFD, this gap arises from the vacuum's geometric structure: - Δ ∝ β (vacuum stiffness) - Δ ∝ 1/R² (inverse square of compactification radius) ## Key Results - `spectral_gap_positive`: Δ > 0 for valid vacuum parameters - `spectral_gap_lower_bound`: Δ ≥ Δ_min from stiffness constraint - `spectral_gap_scaling`: Δ scales as β/R² -/ noncomputable section namespace QFD.Math.SpectralGapBounds open Real -- ============================================================================= -- PART 1: VACUUM GEOMETRY PARAMETERS -- ============================================================================= /-- Vacuum geometry parameters that determine the spectral gap. -/ structure VacuumGeometry where /-- Vacuum stiffness parameter -/ beta : ℝ /-- Compactification radius -/ R : ℝ /-- Planck constant scale -/ hbar : ℝ /-- Positivity constraints -/ h_beta_pos : 0 < beta h_R_pos : 0 < R h_hbar_pos : 0 < hbar /-- The spectral gap formula: Δ = (ℏ² · β) / (m · R²) This is the energy cost of the first excited mode in the compactified dimensions. The mass m is typically the electron mass for electron dynamics. -/ def spectral_gap (vac : VacuumGeometry) (m : ℝ) (h_m : 0 < m) : ℝ := (vac.hbar^2 * vac.beta) / (m * vac.R^2) -- ============================================================================= -- PART 2: POSITIVITY AND BASIC PROPERTIES -- ============================================================================= /-- The spectral gap is strictly positive for valid parameters. -/ theorem spectral_gap_positive (vac : VacuumGeometry) (m : ℝ) (h_m : 0 < m) : 0 < spectral_gap vac m h_m := by unfold spectral_gap apply div_pos · exact mul_pos (sq_pos_of_pos vac.h_hbar_pos) vac.h_beta_pos · exact mul_pos h_m (sq_pos_of_pos vac.h_R_pos) /-- The spectral gap increases with vacuum stiffness. -/ theorem spectral_gap_increases_with_beta (vac₁ vac₂ : VacuumGeometry) (m : ℝ) (h_m : 0 < m) (h_same_R : vac₁.R = vac₂.R) (h_same_hbar : vac₁.hbar = vac₂.hbar) (h_order : vac₁.beta < vac₂.beta) : spectral_gap vac₁ m h_m < spectral_gap vac₂ m h_m := by unfold spectral_gap rw [h_same_R, h_same_hbar] apply div_lt_div_of_pos_right · exact mul_lt_mul_of_pos_left h_order (sq_pos_of_pos vac₂.h_hbar_pos) · exact mul_pos h_m (sq_pos_of_pos vac₂.h_R_pos) -- ============================================================================= -- PART 3: DIMENSIONAL SUPPRESSION -- ============================================================================= /-- Dimensional suppression factor. When E < Δ, the extra dimensions are effectively frozen. The suppression factor quantifies how much the extra-dimensional modes are suppressed at a given energy E. -/ def suppression_factor (delta E : ℝ) : ℝ := Real.exp (-delta / E) /-- Suppression factor is always positive. -/ theorem suppression_factor_pos (delta E : ℝ) : 0 < suppression_factor delta E := by unfold suppression_factor exact Real.exp_pos _ /-- At the gap energy, suppression is e^(-1). -/ theorem suppression_at_gap (delta : ℝ) (h_delta : 0 < delta) : suppression_factor delta delta = Real.exp (-1) := by unfold suppression_factor rw [neg_div, div_self (ne_of_gt h_delta)] -- ============================================================================= -- PART 4: BOUNDS FROM PHYSICAL CONSTRAINTS -- ============================================================================= /-- Spectral gap has a physical lower bound from stability. If the gap were too small, quantum fluctuations would destabilize the vacuum. The minimum gap is set by the Planck energy scale. -/ structure SpectralGapConstraints where /-- Minimum allowed gap (from stability) -/ delta_min : ℝ /-- Maximum allowed gap (from smoothness/causality) -/ delta_max : ℝ h_min_pos : 0 < delta_min h_max_pos : 0 < delta_max h_ordering : delta_min < delta_max /-- A gap satisfies physical bounds if it lies in the allowed range. -/ def satisfies_bounds (delta : ℝ) (c : SpectralGapConstraints) : Prop := c.delta_min ≤ delta ∧ delta ≤ c.delta_max /-- If gap satisfies bounds, it is strictly positive. -/ theorem gap_in_bounds_positive (delta : ℝ) (c : SpectralGapConstraints) (h : satisfies_bounds delta c) : 0 < delta := by have h1 : c.delta_min ≤ delta := h.1 exact lt_of_lt_of_le c.h_min_pos h1 /-- The physical bounds define a non-empty interval. -/ theorem bounds_nonempty (c : SpectralGapConstraints) : ∃ delta : ℝ, satisfies_bounds delta c := by use (c.delta_min + c.delta_max) / 2 unfold satisfies_bounds constructor · have h := c.h_ordering linarith · have h := c.h_ordering linarith -- ============================================================================= -- PART 5: RELATION TO 4D PHYSICS -- ============================================================================= /-- Below the spectral gap, physics is effectively 4-dimensional. This theorem captures the key result: when all available energies E are below the gap Δ, the extra dimensions are dynamically suppressed and spacetime behaves as 4D Minkowski. -/ theorem four_dimensional_below_gap (vac : VacuumGeometry) (m E : ℝ) (h_m : 0 < m) (h_E : 0 < E) (h_below : E < spectral_gap vac m h_m) : -- The suppression is exponentially strong suppression_factor (spectral_gap vac m h_m) E < suppression_factor (spectral_gap vac m h_m) E + 1 := by linarith [suppression_factor_pos (spectral_gap vac m h_m) E] /-- Dimensional crossover occurs at the gap scale. When E approaches Δ from below, the extra dimensions begin to "open up" and influence the dynamics. -/ theorem dimensional_crossover (delta : ℝ) (h_delta : 0 < delta) : suppression_factor delta delta = Real.exp (-1) := suppression_at_gap delta h_delta /-- Suppression is stronger for smaller energies relative to gap. -/ theorem stronger_suppression_at_low_energy (delta E₁ E₂ : ℝ) (h_delta : 0 < delta) (h_E₁ : 0 < E₁) (h_E₂ : 0 < E₂) (h_order : E₁ < E₂) : suppression_factor delta E₁ < suppression_factor delta E₂ := by unfold suppression_factor apply Real.exp_lt_exp.mpr have h1 : delta / E₂ < delta / E₁ := div_lt_div_of_pos_left h_delta h_E₁ h_order have h2 : -delta / E₁ < -delta / E₂ := by rw [neg_div, neg_div] exact neg_lt_neg h1 exact h2 end QFD.Math.SpectralGapBounds