import Mathlib.Analysis.Normed.Module.Basic import Mathlib.Order.Filter.Basic import Mathlib.Topology.Basic import Mathlib.Data.Real.Basic noncomputable section open Filter Topology namespace QFD.Neutrino /-! # Appendix N.2 — Bleaching Limit (Formal Scaffold) This file formalizes the core mathematical content of Appendix N.2 in an **abstract** and **reusable** form. Appendix N.2 asserts two independent facts about the "bleaching" family ψ ↦ λ • ψ: 1. **Energy collapses** under amplitude scaling as λ → 0. 2. **Topological charge** (winding) is invariant under any **nonzero** scaling (λ ≠ 0). We package only the hypotheses required for these claims in `BleachingHypotheses`. The resulting theorems contain **no QFD-specific PDE** assumptions; they are meant to be instantiated later with the concrete QFD energy functional and winding definition. -/ /-- The bleaching family: uniform amplitude scaling. -/ def bleach {Ψ : Type*} [SMul ℝ Ψ] (ψ : Ψ) (lam : ℝ) : Ψ := lam • ψ /-- Hypotheses required to formalize the bleaching argument in Appendix N.2. * `Energy` is a real-valued functional on states. * `QTop` is an integer-valued topological invariant (winding number). * `energy_scale_sq` encodes quadratic energy scaling under amplitude rescaling. * `qtop_invariant` encodes invariance of winding under any nonzero rescaling. -/ structure BleachingHypotheses (Ψ : Type*) [SMul ℝ Ψ] where Energy : Ψ → ℝ QTop : Ψ → ℤ energy_scale_sq : ∀ (ψ : Ψ) (lam : ℝ), Energy (bleach ψ lam) = (lam ^ 2) * Energy ψ qtop_invariant : ∀ (ψ : Ψ) (lam : ℝ), lam ≠ 0 → QTop (bleach ψ lam) = QTop ψ namespace BleachingHypotheses variable {Ψ : Type*} [SMul ℝ Ψ] (H : BleachingHypotheses Ψ) /-- Energy vanishes in the bleaching limit lam → 0, assuming quadratic energy scaling. -/ theorem tendsto_energy_bleach_zero (ψ : Ψ) : Tendsto (fun lam : ℝ => H.Energy (bleach ψ lam)) (𝓝 0) (𝓝 0) := by -- Reduce to a pure real limit: (λ^2) * const → 0. have hid : Tendsto (fun x : ℝ => x) (𝓝 (0 : ℝ)) (𝓝 (0 : ℝ)) := tendsto_id have hpow2 : Tendsto (fun x : ℝ => x ^ 2) (𝓝 (0 : ℝ)) (𝓝 (0 : ℝ)) := by -- x^2 = x*x and 0*0 = 0 simpa [pow_two] using (hid.mul hid) have hmul : Tendsto (fun x : ℝ => (x ^ 2) * H.Energy ψ) (𝓝 (0 : ℝ)) (𝓝 (0 : ℝ)) := by -- Multiply by a constant. simpa using (hpow2.mul tendsto_const_nhds) -- Rewrite Energy(λ•ψ) using the scaling law. convert hmul using 1 funext lam simp only [bleach] exact H.energy_scale_sq ψ lam /-- Topological charge is invariant under bleaching for any lam ≠ 0. -/ theorem qtop_bleach_eq (ψ : Ψ) {lam : ℝ} (hlam : lam ≠ 0) : H.QTop (bleach ψ lam) = H.QTop ψ := by simpa [bleach] using H.qtop_invariant ψ lam hlam end BleachingHypotheses end QFD.Neutrino