import QFD.Neutrino_Bleaching import Mathlib.Data.Real.Basic import Mathlib.Order.Filter.Basic import Mathlib.Topology.Basic noncomputable section open Filter Topology namespace QFD.Neutrino /-! # Appendix N.2 — Toy Topology Instantiation (Gate N-L2B) This file **instantiates** the abstract scaffold in `QFD.Neutrino_Bleaching` with a concrete (toy) state space. Purpose: - Demonstrate that the `BleachingHypotheses` structure is satisfiable. - Provide a working pattern for the *real* QFD instantiation (Energy functional + winding number). Toy choices: - State space Ψ := ℝ - Energy(x) := x² (quadratic by construction) - QTop(x) := 0 (trivial topology; replaced later by a winding number) This completes the Lean plumbing needed for Theorem N.1 at the "mechanism" level: Energy collapses under bleaching, while QTop is invariant for λ ≠ 0. -/ abbrev Ψtoy : Type := ℝ def Energy_toy (x : Ψtoy) : ℝ := x ^ 2 def QTop_toy (_x : Ψtoy) : ℤ := 0 lemma energy_scale_sq_toy (x : Ψtoy) (lam : ℝ) : Energy_toy (bleach x lam) = (lam ^ 2) * Energy_toy x := by -- bleach x lam = lam * x for Ψtoy = ℝ -- (lam*x)^2 = lam^2 * x^2 simp [bleach, Energy_toy, pow_two, mul_left_comm, mul_comm] lemma qtop_invariant_toy (x : Ψtoy) (lam : ℝ) (_hlam : lam ≠ 0) : QTop_toy (bleach x lam) = QTop_toy x := by -- Trivial by definition. simp [QTop_toy] /-- The toy instantiation of `BleachingHypotheses`. -/ def ToyBleachingHypotheses : BleachingHypotheses Ψtoy where Energy := Energy_toy QTop := QTop_toy energy_scale_sq := by intro x lam simpa using energy_scale_sq_toy x lam qtop_invariant := by intro x lam hlam simpa using qtop_invariant_toy x lam hlam /-- Corollary: In the toy model, energy vanishes as lam → 0 under bleaching. -/ theorem tendsto_energy_bleach_zero_toy (x : Ψtoy) : Tendsto (fun lam : ℝ => (ToyBleachingHypotheses).Energy (bleach x lam)) (𝓝 0) (𝓝 0) := (BleachingHypotheses.tendsto_energy_bleach_zero (H := ToyBleachingHypotheses) x) /-- Corollary: In the toy model, QTop is invariant under any nonzero scaling. -/ theorem qtop_bleach_eq_toy (x : Ψtoy) {lam : ℝ} (hlam : lam ≠ 0) : (ToyBleachingHypotheses).QTop (bleach x lam) = (ToyBleachingHypotheses).QTop x := (BleachingHypotheses.qtop_bleach_eq (H := ToyBleachingHypotheses) x hlam) end QFD.Neutrino