import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.Deriv.Add import Mathlib.Analysis.Calculus.Deriv.Mul import Mathlib.Analysis.Calculus.Deriv.Inv import Mathlib.Analysis.Calculus.Deriv.Comp import Mathlib.Analysis.Calculus.Deriv.ZPow import Mathlib.Analysis.SpecialFunctions.Exp import Mathlib.Analysis.SpecialFunctions.ExpDeriv import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Tactic noncomputable section /-! # The Yukawa Derivation (Vacuum Pressure) **Status**: ✅ COMPLETE (0 Sorries) **Date**: 2025-12-31 ## Physical Interpretation Standard Physics: The Strong Force is a fundamental interaction mediated by exchange particles (pions/gluons). QFD: The "Strong Force" is the restoring force (Pressure Gradient) of the vacuum density near a soliton core. ## Main Results - `soliton_gradient_is_yukawa`: Derivative of soliton density yields Yukawa functional form - `magnitude_match`: Geometric and textbook forces match (opposite sign conventions) -/ namespace QFD.Nuclear.YukawaDerivation open Real /-- The Soliton Density Profile $\rho(r)$. Describes how the time-flow density concentrates near a nucleon core. A: Amplitude (Soliton Height) lam: Vacuum Stiffness (renamed from lambda to avoid keyword collision) -/ def rho_soliton (A lam : ℝ) (r : ℝ) : ℝ := A * (exp (-lam * r)) / r /-- The Vacuum Force $F(r)$. Force is proportional to negative gradient of density (restoring force). -/ def vacuum_force (k A lam : ℝ) (r : ℝ) : ℝ := -k * deriv (rho_soliton A lam) r /-- The "Textbook" Yukawa Force Law. Derived from $V = -g^2 \frac{e^{-mr}}{r}$. -/ def textbook_yukawa_force (g_sq m : ℝ) (r : ℝ) : ℝ := -g_sq * (exp (-m * r)) * (1 / r^2 + m / r) /-- **Theorem: The Soliton Gradient is the Yukawa Force** Prove that taking the derivative of the geometric Soliton Density yields the exact functional form of the Strong Force. -/ theorem soliton_gradient_is_yukawa (A lam : ℝ) (r : ℝ) (h_r : r ≠ 0) : deriv (rho_soliton A lam) r = -A * (exp (-lam * r)) * (1 / r^2 + lam / r) := by unfold rho_soliton -- Step 1: Derivative of numerator A * exp(-lam * x) have h_num : HasDerivAt (fun x => A * exp (-lam * x)) (-A * lam * exp (-lam * r)) r := by -- First get derivative of exp(-lam * x) have h_exp : HasDerivAt (fun x => exp (-lam * x)) (-lam * exp (-lam * r)) r := by have h_inner : HasDerivAt (fun x => -lam * x) (-lam) r := by convert (hasDerivAt_id r).const_mul (-lam) using 1 simp have h_comp := HasDerivAt.comp r (Real.hasDerivAt_exp (-lam * r)) h_inner convert h_comp using 1 ring -- Apply constant multiple rule have h_const : HasDerivAt (fun x => A * exp (-lam * x)) (A * (-lam * exp (-lam * r))) r := h_exp.const_mul A ring_nf at h_const ⊢ exact h_const -- Step 2: Derivative of denominator x have h_denom : HasDerivAt (fun x => x) 1 r := hasDerivAt_id r -- Step 3: Apply quotient rule have h_quot : HasDerivAt (fun x => (A * exp (-lam * x)) / x) ((-A * lam * exp (-lam * r) * r - A * exp (-lam * r) * 1) / r^2) r := h_num.div h_denom h_r -- Step 4: Simplify to target form have h_simp : (-A * lam * exp (-lam * r) * r - A * exp (-lam * r) * 1) / r^2 = -A * exp (-lam * r) * (1 / r^2 + lam / r) := by field_simp [h_r] ring rw [h_quot.deriv] exact h_simp /-- **Corollary: Magnitude Identification** By comparing the geometric gradient with the Yukawa form, we identify physical constants. The force magnitudes match (signs differ due to attractive vs restoring force convention). -/ theorem magnitude_match (g_sq m k A lam : ℝ) (r : ℝ) (h_r : r ≠ 0) (h_mass : lam = m) (h_coupling : k * A = g_sq) : vacuum_force k A lam r = -textbook_yukawa_force g_sq m r := by unfold vacuum_force textbook_yukawa_force rw [soliton_gradient_is_yukawa A lam r h_r, ←h_mass, ←h_coupling] simp only [neg_mul, neg_neg] ring end QFD.Nuclear.YukawaDerivation