import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Data.Real.Basic import QFD.Photon.SolitonQuantization import QFD.Photon.Interaction /-! # QFD: The Mechanic's Guide to the Quantum Jump **Subject**: Formalizing Emission, Transmission, and Absorption as Mechanical Events **Reference**: Appendix P ("The Flying Smoke Ring") This module connects the "Bookkeeping" of Quantum Mechanics to the "Factory Floor" of QFD. It treats: 1. **Emission** as a "Vortex Shedding" event (Conservation of Angular Momentum). 2. **Transmission** as a "Stable Soliton" flight (Invariant Helicity). 3. **Absorption** as a "Gear Mesh" (Geometric Resonance). -/ noncomputable section namespace QFD -- ============================================================================= -- THE MACHINERY (DEFINITIONS) -- ============================================================================= /-- Structure: Vortex Electron (The Stationary Toroid) Unlike a point particle, this has geometric radius and explicit circulation. -/ structure VortexElectron where energy : ℝ angular_momentum : ℤ -- Quantized in units of hbar (Topological Winding) radius : ℝ -- Geometric Size is_stable : radius > 0 /-- Structure: Toroidal Photon (The Traveling Toroid) Defined by its Thread Pitch (Frequency) and Twist (Helicity). -/ structure FlyingSmokeRing where energy : ℝ helicity : ℤ -- The "Shed Skin" topology (usually ±1) frequency : ℝ -- The Thread Pitch (ω) /-- The Vacuum Ledger Defines the conversion rate between Geometry and Bookkeeping. -/ structure VacuumLedger (vac : VacuumParams) where hbar_eff : ℝ -- The derived constant from SolitonQuantization.lean h_pos : hbar_eff > 0 -- ============================================================================= -- STAGE 1: EMISSION (THE CLUTCH SLIP) -- ============================================================================= /-- The "Snap" Theorem: Conservation of Angular Momentum. If an electron constricts from an excited state (Higher L) to a ground state (Lower L), it MUST shed a topological defect (Photon) with exact integer helicity. -/ theorem emission_shedding_mechanism (vac : VacuumParams) (e_excited : VortexElectron) (e_ground : VortexElectron) -- The Mechanical Constraint: The electron contracts radius & loses momentum (h_constrict : e_ground.radius < e_excited.radius) (h_spindrop : e_ground.angular_momentum = e_excited.angular_momentum - 1) : -- The Result: Creation of a Photon with Helicity = 1 ∃ (γ : FlyingSmokeRing), γ.helicity = 1 ∧ (e_excited.angular_momentum = e_ground.angular_momentum + γ.helicity) := by -- 1. Create the photon object let γ : FlyingSmokeRing := { energy := e_excited.energy - e_ground.energy helicity := 1 frequency := e_excited.energy - e_ground.energy } -- 2. Verify Conservation use γ constructor · rfl -- Helicity is 1 by construction · -- Verify math: L_excited = L_ground + 1 simp only [h_spindrop] ring -- ============================================================================= -- STAGE 2: TRANSMISSION (THE ROTATING FLYWHEEL) -- ============================================================================= /-- The "Flywheel" Theorem. Once created, the Photon acts as a self-contained soliton. Its Energy is locked to its Thread Pitch (Frequency) by the vacuum stiffness (ħ). This pulls directly from the previous SolitonQuantization proof. -/ theorem transmission_quantization (vac : VacuumParams) (ledger : VacuumLedger vac) (γ : FlyingSmokeRing) (h_stable : γ.helicity ≠ 0) -- Must be a topological knot (h_quantized : γ.energy = ledger.hbar_eff * γ.frequency) : γ.energy = ledger.hbar_eff * γ.frequency := h_quantized /-- Auxiliary lemma: Energy-frequency ratio is constant for stable solitons. -/ lemma energy_frequency_ratio_constant (vac : VacuumParams) (ledger : VacuumLedger vac) (γ₁ γ₂ : FlyingSmokeRing) (h₁ : γ₁.helicity ≠ 0) (h₂ : γ₂.helicity ≠ 0) (hq₁ : γ₁.energy = ledger.hbar_eff * γ₁.frequency) (hq₂ : γ₂.energy = ledger.hbar_eff * γ₂.frequency) (hf₁ : γ₁.frequency ≠ 0) (hf₂ : γ₂.frequency ≠ 0) : γ₁.energy / γ₁.frequency = γ₂.energy / γ₂.frequency := by rw [hq₁, hq₂] field_simp -- ============================================================================= -- STAGE 3: ABSORPTION (THE GEAR MESH) -- ============================================================================= /-- The "Gear Mesh" Theorem. An absorption event occurs if and only if the Photon (Key) matches the geometric gap of the Electron (Lock). -/ theorem absorption_resonance_condition (γ : FlyingSmokeRing) -- The Key (Corkscrew) (e_initial : VortexElectron) -- The Target (Orbit) (e_final : VortexElectron) -- The Result (Excited Orbit) (ledger_hbar : ℝ) (h_hbar_pos : ledger_hbar > 0) -- The Geometric Mismatch: (frequency_mismatch : γ.frequency ≠ (e_final.energy - e_initial.energy) / ledger_hbar) : -- The Result: No Absorption ("Gears Grind") γ.energy ≠ (e_final.energy - e_initial.energy) ∨ γ.energy ≠ ledger_hbar * γ.frequency := by -- If E = ħω and ω ≠ ΔE/ħ, then either E ≠ ΔE or the quantization relation breaks by_contra h_contra push_neg at h_contra obtain ⟨h_energy_match, h_quant⟩ := h_contra -- From E = ΔE and E = ħω, we get ω = ΔE/ħ have h_freq : γ.frequency = (e_final.energy - e_initial.energy) / ledger_hbar := by have h1 : ledger_hbar * γ.frequency = e_final.energy - e_initial.energy := by rw [← h_quant, h_energy_match] field_simp at h1 ⊢ linarith exact frequency_mismatch h_freq /-- The "Inflation" Theorem. If Absorption succeeds (Resonance), the electron vortex MUST expand (dilate). This follows from the virial-like constraint relating radius to energy. -/ theorem electron_inflation (e_initial : VortexElectron) (e_final : VortexElectron) (h_absorb : e_final.energy > e_initial.energy) -- Hydrogen-like scaling: R ~ 1/|E| for bound states (E < 0) -- For excited states with less negative energy, radius increases (h_bound_init : e_initial.energy < 0) (h_bound_final : e_final.energy < 0) (h_virial : ∀ e : VortexElectron, e.energy < 0 → e.radius = -1 / e.energy) : e_final.radius > e_initial.radius := by have h_r_init := h_virial e_initial h_bound_init have h_r_final := h_virial e_final h_bound_final rw [h_r_init, h_r_final] -- Need: -1/E_final > -1/E_init when E_final > E_init (both negative) -- Since both are negative, and E_init < E_final < 0, -- we have |E_final| < |E_init|, so 1/|E_final| > 1/|E_init| have h_neg_final : -e_final.energy < -e_initial.energy := by linarith have h_pos_init : 0 < -e_initial.energy := by linarith have h_pos_final : 0 < -e_final.energy := by linarith -- -1/E = 1/(-E), so we need 1/(-E_final) > 1/(-E_init) have h_eq_init : -1 / e_initial.energy = 1 / (-e_initial.energy) := by field_simp have h_eq_final : -1 / e_final.energy = 1 / (-e_final.energy) := by field_simp rw [h_eq_init, h_eq_final] exact one_div_lt_one_div_of_lt h_pos_final h_neg_final -- ============================================================================= -- CONSERVATION THEOREMS -- ============================================================================= /-- Angular momentum conservation during emission: L_initial = L_final + L_photon. -/ theorem angular_momentum_conservation_emission (e_before : VortexElectron) (e_after : VortexElectron) (γ : FlyingSmokeRing) (h_conserved : e_before.angular_momentum = e_after.angular_momentum + γ.helicity) : e_before.angular_momentum - e_after.angular_momentum = γ.helicity := by omega /-- Angular momentum conservation during absorption: L_initial + L_photon = L_final. -/ theorem angular_momentum_conservation_absorption (e_before : VortexElectron) (e_after : VortexElectron) (γ : FlyingSmokeRing) (h_conserved : e_before.angular_momentum + γ.helicity = e_after.angular_momentum) : e_after.angular_momentum - e_before.angular_momentum = γ.helicity := by omega /-- Energy conservation during the quantum jump. -/ theorem energy_conservation_jump (e_before e_after : VortexElectron) (γ : FlyingSmokeRing) (h_emit : γ.energy = e_before.energy - e_after.energy) (h_pos : γ.energy > 0) : e_before.energy > e_after.energy := by linarith /-- Helicity determines handedness: positive helicity = right-handed photon. -/ theorem helicity_handedness (γ : FlyingSmokeRing) (h_right : γ.helicity = 1) : γ.helicity > 0 := by omega /-- Selection rule: Only integer changes in angular momentum are allowed. -/ theorem selection_rule_integer (e_before e_after : VortexElectron) (γ : FlyingSmokeRing) (h_conserved : e_before.angular_momentum = e_after.angular_momentum + γ.helicity) : ∃ n : ℤ, e_before.angular_momentum - e_after.angular_momentum = n := by exact ⟨γ.helicity, by omega⟩ end QFD