import Mathlib.Data.Real.Basic import Mathlib.Tactic /-! # QFD: Soliton Quantization Theorem **Subject**: Deriving `E = ℏ ω` from topological helicity constraints **Reference**: Appendix P ("The Flying Smoke Ring") Energy scaling: `E ∼ C_E · V · Φ₀ · k²` Helicity scaling: `H ∼ C_H · V · Φ₀ · k` Topological lock: `H = n · H₀` Dispersion: `ω = c · k` ⇒ `E = ħ_eff · ω` with `ħ_eff = (C_E / C_H) · (n · H₀) / c` -/ noncomputable section namespace QFD -- ============================================================================= -- PART 1: DEFINITIONS & STRUCTURES -- ============================================================================= /-- Vacuum parameters describing the medium stiffness and wave speed. -/ structure VacuumParams where c : ℝ h_pos : 0 < c /-- Toroidal soliton state. The geometric specifics are abstracted into an effective volume `V`, intensity scale `Φ₀`, and wavenumber `k`. -/ structure ToroidalState where V : ℝ Φ₀ : ℝ k : ℝ h_phys : 0 < V ∧ 0 < k ∧ 0 < Φ₀ /-- Dimensionful constants from integrating the Lagrangian density. -/ structure ScalingConsts where C_E : ℝ C_H : ℝ hCE : 0 < C_E hCH : 0 < C_H /-- Leading-order gradient energy. -/ def energy (C : ScalingConsts) (s : ToroidalState) : ℝ := C.C_E * s.V * s.Φ₀ * s.k ^ 2 /-- Topological helicity functional. -/ def helicity (C : ScalingConsts) (s : ToroidalState) : ℝ := C.C_H * s.V * s.Φ₀ * s.k /-- Carrier frequency imposed by the vacuum dispersion. -/ def frequency (vac : VacuumParams) (s : ToroidalState) : ℝ := vac.c * s.k -- ============================================================================= -- PART 2: ALGEBRAIC BRIDGE -- ============================================================================= /-- Energy divided by helicity is proportional to the wavenumber: `E = (C_E / C_H) · H · k`. -/ lemma energy_helicity_relation (C : ScalingConsts) (s : ToroidalState) : energy C s = (C.C_E / C.C_H) * (helicity C s) * s.k := by have hCH_ne_zero : C.C_H ≠ 0 := ne_of_gt C.hCH unfold energy helicity field_simp [hCH_ne_zero] -- ============================================================================= -- PART 3: THE QUANTIZATION THEOREM -- ============================================================================= /-- Topology forces `E = ħ_eff · ω`. Once helicity is locked to `n · H₀`, energy is forced to be linear in the carrier frequency. -/ theorem topology_forces_hbar_relation (vac : VacuumParams) (C : ScalingConsts) (s : ToroidalState) (n : ℕ) (H₀ : ℝ) (h_locked : helicity C s = (n : ℝ) * H₀) : ∃ ħ_eff : ℝ, energy C s = ħ_eff * frequency vac s := by have hCH_ne_zero : C.C_H ≠ 0 := ne_of_gt C.hCH have h_c_ne_zero : vac.c ≠ 0 := ne_of_gt vac.h_pos have h_k_pos : s.k > 0 := s.h_phys.2.1 have h_k_ne : s.k ≠ 0 := ne_of_gt h_k_pos -- Define the effective Planck constant using h_locked let ħ_candidate := (C.C_E / C.C_H) * ((n : ℝ) * H₀) / vac.c refine ⟨ħ_candidate, ?_⟩ -- Rewrite energy using the helicity relation rw [energy_helicity_relation C s, h_locked] unfold frequency ħ_candidate field_simp [hCH_ne_zero, h_c_ne_zero, h_k_ne] -- ============================================================================= -- PART 4: EXPLICIT FORMULA FOR ħ_eff -- ============================================================================= /-- The explicit formula for the effective Planck constant: `ħ_eff = (C_E / C_H) · (n · H₀) / c` This shows that ħ emerges from: - The ratio of energy to helicity scaling constants (C_E/C_H) - The quantized helicity (n · H₀) - The vacuum wave speed (c) -/ def hbar_effective (C : ScalingConsts) (vac : VacuumParams) (n : ℕ) (H₀ : ℝ) : ℝ := (C.C_E / C.C_H) * ((n : ℝ) * H₀) / vac.c /-- The effective Planck constant is positive when H₀ > 0. -/ theorem hbar_effective_pos (C : ScalingConsts) (vac : VacuumParams) (n : ℕ) (H₀ : ℝ) (hn : 0 < n) (hH₀ : 0 < H₀) : 0 < hbar_effective C vac n H₀ := by unfold hbar_effective have hCH_ne : C.C_H ≠ 0 := ne_of_gt C.hCH have hc_ne : vac.c ≠ 0 := ne_of_gt vac.h_pos have h_ratio_pos : 0 < C.C_E / C.C_H := div_pos C.hCE C.hCH have h_nH₀_pos : 0 < (n : ℝ) * H₀ := mul_pos (Nat.cast_pos.mpr hn) hH₀ exact div_pos (mul_pos h_ratio_pos h_nH₀_pos) vac.h_pos /-- Energy equals ħ_eff times frequency (explicit form). -/ theorem energy_eq_hbar_freq (vac : VacuumParams) (C : ScalingConsts) (s : ToroidalState) (n : ℕ) (H₀ : ℝ) (h_locked : helicity C s = (n : ℝ) * H₀) : energy C s = hbar_effective C vac n H₀ * frequency vac s := by have hCH_ne_zero : C.C_H ≠ 0 := ne_of_gt C.hCH have h_c_ne_zero : vac.c ≠ 0 := ne_of_gt vac.h_pos have h_k_ne : s.k ≠ 0 := ne_of_gt s.h_phys.2.1 rw [energy_helicity_relation C s, h_locked] unfold hbar_effective frequency field_simp [hCH_ne_zero, h_c_ne_zero, h_k_ne] -- ============================================================================= -- PART 5: PHYSICAL INTERPRETATION -- ============================================================================= /-- **Planck's relation emerges from topology.** The relation E = ħω is not a postulate but a consequence of: 1. Toroidal topology forcing helicity quantization (H = n·H₀) 2. Energy-helicity scaling from the vacuum Lagrangian (E ∝ H·k) 3. Linear dispersion from vacuum stiffness (ω = c·k) The "Planck constant" ħ_eff is determined by vacuum geometry, not a fundamental constant of nature. -/ theorem planck_from_topology (vac : VacuumParams) (C : ScalingConsts) (s : ToroidalState) (n : ℕ) (H₀ : ℝ) (h_locked : helicity C s = (n : ℝ) * H₀) (hn : 0 < n) (hH₀ : 0 < H₀) : ∃ ħ : ℝ, 0 < ħ ∧ energy C s = ħ * frequency vac s := by refine ⟨hbar_effective C vac n H₀, ?_, ?_⟩ · exact hbar_effective_pos C vac n H₀ hn hH₀ · exact energy_eq_hbar_freq vac C s n H₀ h_locked end QFD