/- Proof: Existence and Uniqueness of the Golden Loop Solution Author: QFD AI Assistant Date: January 10, 2026 Theorem: exists_unique_beta Description: This proof demonstrates that the core QFD equation defining Vacuum Stiffness (Beta) has exactly one valid real solution. This refutes the skeptical claim that Beta is an arbitrary free parameter; it is mathematically determined by Alpha. -/ import Mathlib.Analysis.SpecialFunctions.ExpDeriv import Mathlib.Analysis.Calculus.MeanValue import Mathlib.Data.Real.Basic import Mathlib.Analysis.SpecialFunctions.Log.Basic import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic import Mathlib.Tactic.Linarith import Mathlib.Tactic.NormNum import Mathlib.Tactic.Positivity import QFD.Math.Function_Monotonicity namespace QFD_Proofs.Existence open Real Set -- Redefining constants locally for self-contained proof context noncomputable def alpha : ℝ := 1 / 137.035999 noncomputable def c1 : ℝ := 0.5 * (1 - alpha) noncomputable def target_val : ℝ := c1 / (Real.pi^2 * alpha) -- The core function derived from the Golden Loop: f(x) = x * e^x noncomputable def golden_function (x : ℝ) : ℝ := x * exp x /-- alpha is positive -/ lemma alpha_pos : alpha > 0 := by unfold alpha positivity /-- alpha < 1 -/ lemma alpha_lt_one : alpha < 1 := by unfold alpha norm_num /-- c1 is positive -/ lemma c1_pos : c1 > 0 := by unfold c1 have h := alpha_lt_one linarith /-- target_val is positive -/ lemma target_val_pos : target_val > 0 := by unfold target_val have h1 : c1 > 0 := c1_pos have h2 : Real.pi^2 > 0 := sq_pos_of_pos Real.pi_pos have h3 : alpha > 0 := alpha_pos have h4 : Real.pi^2 * alpha > 0 := mul_pos h2 h3 exact div_pos h1 h4 /-- golden_function equals x_exp_x from Function_Monotonicity -/ lemma golden_function_eq : golden_function = fun x => x * exp x := rfl /-- Lemma 1: The function f(x) = x * e^x is strictly monotonic for x > 0. -/ lemma golden_function_strict_mono : StrictMonoOn golden_function (Ioi 0) := by have h := QFD_Proofs.Starch.x_exp_x_monotonic convert h using 1 /-- golden_function is continuous -/ lemma golden_function_continuous : Continuous golden_function := by unfold golden_function exact continuous_id.mul continuous_exp /-- golden_function at 0 is 0 -/ lemma golden_function_zero : golden_function 0 = 0 := by unfold golden_function; simp /-- golden_function at large values exceeds target_val -/ lemma golden_function_large (M : ℝ) (hM : M > 0) : ∃ x : ℝ, x > 0 ∧ golden_function x > M := by -- x * exp(x) grows without bound -- For x = M + 1, we have x * exp(x) >= (M+1) * 1 = M + 1 > M since exp(x) >= 1 for x >= 0 use M + 1 constructor · linarith · unfold golden_function have hpos : M + 1 > 0 := by linarith have h1 : exp (M + 1) ≥ 1 := one_le_exp hpos.le have h2 : (M + 1) * exp (M + 1) ≥ (M + 1) * 1 := by apply mul_le_mul_of_nonneg_left h1 linarith linarith /-- Theorem: There exists a unique β > 0 satisfying the Golden Loop. -/ theorem exists_unique_beta : ∃! β : ℝ, β > 0 ∧ golden_function β = target_val := by -- Get bounds for IVT have htv_pos := target_val_pos obtain ⟨upper, hupper_pos, hupper_large⟩ := golden_function_large target_val htv_pos -- IVT on [0, upper] have h_cont : ContinuousOn golden_function (Icc 0 upper) := golden_function_continuous.continuousOn have h_at_zero : golden_function 0 = 0 := golden_function_zero have h_low : golden_function 0 ≤ target_val := by rw [h_at_zero]; exact le_of_lt htv_pos have h_high : target_val ≤ golden_function upper := le_of_lt hupper_large -- target_val ∈ [f(0), f(upper)] have h_mem : target_val ∈ Icc (golden_function 0) (golden_function upper) := ⟨h_low, h_high⟩ obtain ⟨β, hβ_mem, hβ_eq⟩ := intermediate_value_Icc (by linarith : (0:ℝ) ≤ upper) h_cont h_mem -- β > 0 (strict inequality since f(0) = 0 < target_val) have hβ_pos : β > 0 := by by_contra h push_neg at h have hβ_eq_0 : β = 0 := le_antisymm h hβ_mem.1 rw [hβ_eq_0, golden_function_zero] at hβ_eq linarith -- Existence use β constructor · exact ⟨hβ_pos, hβ_eq⟩ -- Uniqueness via strict monotonicity · intro β' ⟨hβ'_pos, hβ'_eq⟩ by_contra hne have hmono := golden_function_strict_mono rcases lt_trichotomy β β' with hlt | heq | hgt · have h := hmono hβ_pos hβ'_pos hlt rw [hβ_eq, hβ'_eq] at h exact lt_irrefl _ h · exact hne heq.symm · have h := hmono hβ'_pos hβ_pos hgt rw [hβ_eq, hβ'_eq] at h exact lt_irrefl _ h end QFD_Proofs.Existence