/- Proof: Golden Loop Interval Solver Theorem: golden_loop_interval_bound Description: A rigorous proof that the unique solution β to e^β/β = K exists for K in the QFD range. Uses results from Exp_Bounds_Analysis. This replaces the 'python_root_finding_beta' axiom. -/ import Mathlib.Analysis.SpecialFunctions.ExpDeriv import Mathlib.Analysis.Calculus.MeanValue import Mathlib.Analysis.SpecialFunctions.Log.Basic import Mathlib.Tactic.Linarith import Mathlib.Tactic.NormNum import QFD.Math.Exp_Bounds_Analysis namespace QFD_Proofs open Real Set Filter /-- The target constant derived from Alpha and c1 -/ noncomputable def K_target : ℝ := 6.890910 /-- The function f(β) = e^β / β - same as golden_f from Exp_Bounds_Analysis -/ noncomputable def f_transcendental (beta : ℝ) : ℝ := (exp beta) / beta /-- f_transcendental equals golden_f from Exp_Bounds_Analysis -/ lemma f_eq_golden_f : f_transcendental = QFD_Proofs.Starch.golden_f := by ext x; rfl /-- Derivative of f(β) is positive for β > 1 -/ lemma f_strictly_increasing_on_Ioi_one : StrictMonoOn f_transcendental (Set.Ioi 1) := by rw [f_eq_golden_f] exact QFD_Proofs.Starch.golden_f_strict_mono_on_Ioi_one /-- f is continuous on (0, ∞) -/ lemma f_continuousOn : ContinuousOn f_transcendental (Ioi 0) := by rw [f_eq_golden_f] exact QFD_Proofs.Starch.golden_f_continuousOn /-- K_target > e (since K ≈ 6.89 > e ≈ 2.718) -/ lemma K_target_gt_e : K_target > exp 1 := by unfold K_target have h := QFD_Proofs.Starch.exp_one_lt_three linarith /-- K_target ≤ 10 -/ lemma K_target_le_10 : K_target ≤ 10 := by unfold K_target; norm_num /-- Main Theorem: There exists a unique β > 1 such that f(β) = K_target. This is the Golden Loop root existence and uniqueness. -/ theorem golden_loop_root_exists : ∃ β : ℝ, β > 1 ∧ f_transcendental β = K_target := by rw [f_eq_golden_f] exact QFD_Proofs.Starch.golden_f_exists_root K_target K_target_gt_e K_target_le_10 /-- Uniqueness: If two values β₁, β₂ > 1 both satisfy f(β) = K_target, they're equal -/ theorem golden_loop_root_unique (β₁ β₂ : ℝ) (hβ₁ : β₁ > 1) (hβ₂ : β₂ > 1) (h1 : f_transcendental β₁ = K_target) (h2 : f_transcendental β₂ = K_target) : β₁ = β₂ := by rw [f_eq_golden_f] at h1 h2 exact QFD_Proofs.Starch.golden_f_unique_root K_target β₁ β₂ hβ₁ hβ₂ h1 h2 /-- Combined existence and uniqueness -/ theorem golden_loop_exists_unique : ∃! β : ℝ, β > 1 ∧ f_transcendental β = K_target := by obtain ⟨β, hβ_gt, hβ_eq⟩ := golden_loop_root_exists use β constructor · exact ⟨hβ_gt, hβ_eq⟩ · intro β' ⟨hβ'_gt, hβ'_eq⟩ symm exact golden_loop_root_unique β β' hβ_gt hβ'_gt hβ_eq hβ'_eq end QFD_Proofs