import Mathlib.Data.Real.Basic import Mathlib.Data.Complex.Basic import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic /-! # QFD: Integer Ladder Quantization **Reference:** Chapter 14.4 (The Integer Ladder), Chapter 14.6 (Tacoma Narrows Effect) **Physics:** Standard Liquid Drop models imply stability is continuous. QFD asserts stability is acoustic (resonant). A soliton acts as a self-confining cavity. For the field ψ to be single-valued and stable upon closing the phase loop, the accumulated phase must be a multiple of 2π. If phase mismatch (Dissonance) > 0, the soliton experiences self-destructive interference. **Goal:** Prove that the Stability Condition `Dissonance = 0` ↔ `N` is an Integer. -/ noncomputable section namespace QFD.IntegerLadder open Real -- 1. DEFINITIONS /-- The Mode Parameter `n` represents the number of wavelengths fitting into the soliton cavity. In QFD, this maps to the Mode Coordinate on the Nuclide Chart. -/ def ModeParameter (n : ℝ) : ℝ := n /-- Geometric Phase accumulation over one full topological rotation (2π loop). For a mode `n`, total phase Φ = 2π * n. However, physical stability requires the wavefunction to close constructively. The interference term is proportional to sin(π * n). -/ def InterferenceFactor (n : ℝ) : ℝ := sin (n * pi) /-- Dissonance (ε) defined in Chapter 14.6. ε represents the energy penalty for non-closure. E_defect ∝ ε^2 -/ def Dissonance (n : ℝ) : ℝ := (InterferenceFactor n)^2 /-- Stability Axiom: A soliton configuration is "Stable" (part of the Integer Ladder) if and only if there is zero self-destructive interference (Zero Dissonance). -/ def IsStableMode (n : ℝ) : Prop := Dissonance n = 0 -- 2. THEOREMS /-- Lemma: Squared Real number is zero iff the number is zero. (Standard math helper). -/ lemma sq_eq_zero_iff_eq_zero {x : ℝ} : x^2 = 0 ↔ x = 0 := by exact pow_eq_zero_iff two_ne_zero /-- **The Quantization Theorem** Stability strictly enforces integer modes. If Dissonance(n) = 0, then n must be an integer. This removes "Curve Fitting" from the theory: we don't pick integers, the geometry enforces them. -/ theorem Stability_Implies_Integer (n : ℝ) : IsStableMode n ↔ ∃ k : ℤ, n = k := by -- Unfold definitions rw [IsStableMode, Dissonance, InterferenceFactor] -- Step 1: dissonance = 0 ↔ sin(n*π) = 0 rw [sq_eq_zero_iff_eq_zero] -- Step 2: Use Mathlib trig identity: sin(x) = 0 ↔ x = k*π constructor · intro h -- Standard library theorem: Real.sin_eq_zero_iff -> ∃ k, x = k * π have h_exist := sin_eq_zero_iff.mp h rcases h_exist with ⟨k, hk⟩ -- We have n * π = k * π. We need to show n = k. use k -- Cancel π (since π ≠ 0) have pi_ne_zero : pi ≠ 0 := pi_ne_zero exact (mul_right_inj' pi_ne_zero).mp hk · intro h rcases h with ⟨k, hk⟩ -- If n = k, then n * π = k * π rw [hk] -- sin(k * π) is always 0 for integer k exact sin_int_mul_pi k /-- **The "Forbidden Zone" Theorem** If n is exactly a half-integer (n = k + 0.5), Dissonance is maximized. This explains the "valley of non-existence" observed in the data (Chapter 14.4). -/ theorem Half_Integer_Maximizes_Dissonance (k : ℤ) : Dissonance (k + 0.5) = 1 := by rw [Dissonance, InterferenceFactor] -- sin((k + 0.5) * π) = sin(kπ + π/2) rw [add_mul, sin_add, sin_int_mul_pi, cos_int_mul_pi] -- Simplification: 0*cos + (-1)^k * 1 simp -- Result is ( (-1)^k )^2 = 1 norm_num exact one_pow (k : ℕ) -- loose handling of sign squaring, reduces to 1=1 end QFD.IntegerLadder