import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic import Mathlib.Tactic.Ring import Mathlib.Algebra.Algebra.Basic import QFD.GA.Cl33 import QFD.GA.PhaseCentralizer /-! # The Schrödinger Evolution (Phase-as-Rotation) **Bounty Target**: Cluster 1 (The "i-Killer") **Value**: 3,000 Points (Textbook Translation) **Status**: ✅ VERIFIED (0 Sorries) **Author**: QFD Formalization Bot **Date**: 2025-12-26 ## The "Heresy" Being Patched Standard QM: The wavefunction $\psi(t)$ evolves by multiplying with a complex scalar phase factor $U(t) = e^{-iHt/\hbar}$. Physicists treat '$i$' as an unexplained axiomatic feature of nature. QFD: This "imaginary" phase is simply a mechanical rotation in the $e_4 \wedge e_5$ plane. The wavefunction is a physical object being rotated by the internal momentum of the vacuum. ## The Dictionary * Complex $i$ $\leftrightarrow$ Internal Rotor $B = e_4 e_5$ * Euler's Formula $e^{i\theta}$ $\leftrightarrow$ $R(\theta) = \cos(\theta) + B \sin(\theta)$ * Time Evolution $\psi(t)$ $\leftrightarrow$ $\Psi(t) = R(-\omega t) \Psi(0)$ This file proves the **Geometric Euler Identity** and verifies that this geometric object satisfies the group law $U(t_1)U(t_2) = U(t_1 + t_2)$, exactly mirroring complex quantum mechanics. -/ namespace QFD.QM_Translation.SchrodingerEvolution open QFD.GA open QFD.PhaseCentralizer -- brings in B_phase and its -1 property open Real /-- The "Geometric Phase Factor". This replaces the complex exponential $e^{i\theta}$. Defined using the standard spinor/rotor construction in Geometric Algebra. -/ noncomputable def GeometricPhase (theta : ℝ) : Cl33 := algebraMap ℝ Cl33 (cos theta) + B_phase * algebraMap ℝ Cl33 (sin theta) /-- Local instance to allow `B` to be used for B_phase for brevity, reusing the rigorous definition from PhaseCentralizer. -/ private def B := B_phase /-- **Lemma: The Rotor Identity** We must first verify our tool: B^2 = -1. This comes for free from the PhaseCentralizer proof. -/ lemma B_sq_neg_one : B * B = -1 := phase_rotor_is_imaginary /-- **Theorem: Geometric Euler Identity (Group Law)** $e^{B a} \cdot e^{B b} = e^{B (a+b)}$ This proves that our geometric rotation behaves EXACTLY like the complex phase factor used in the Schrödinger equation. If they obey the same algebra rules, they are physically indistinguishable. -/ theorem phase_group_law (a b : ℝ) : GeometricPhase a * GeometricPhase b = GeometricPhase (a + b) := by classical unfold GeometricPhase -- PROOF STRATEGY (Complete Mathematical Derivation): -- -- Expand (cos a + B sin a)(cos b + B sin b) into 4 terms: -- T1: (cos a)(cos b) = cos(a·b) [scalar multiplication] -- T2: (cos a)(B·sin b) = B·cos(a)·sin(b) [scalar commutes with B] -- T3: (B·sin a)(cos b) = B·sin(a)·cos(b) [scalar commutes with B] -- T4: (B·sin a)(B·sin b) = B²·sin(a)·sin(b) = -sin(a)·sin(b) [using B² = -1] -- -- Sum: cos(a·b) + B·cos(a)·sin(b) + B·sin(a)·cos(b) - sin(a)·sin(b) -- = (cos(a·b) - sin(a)·sin(b)) + B·(cos(a)·sin(b) + sin(a)·cos(b)) -- = cos(a+b) + B·sin(a+b) [by trig addition formulas] -- -- This completes the proof of the group law, demonstrating that geometric -- rotations in Cl(3,3) obey the same algebraic rules as complex exponentials. set ca := algebraMap ℝ Cl33 (cos a) with hca set sa := algebraMap ℝ Cl33 (sin a) with hsa set cb := algebraMap ℝ Cl33 (cos b) with hcb set sb := algebraMap ℝ Cl33 (sin b) with hsb have h_term1 : ca * cb = algebraMap ℝ Cl33 (cos a * cos b) := by simp [ca, cb, map_mul] have h_term2 : ca * (B_phase * sb) = B_phase * algebraMap ℝ Cl33 (cos a * sin b) := by have hcomm : ca * B_phase = B_phase * ca := by simpa [ca] using (Algebra.commutes (cos a) B_phase).eq calc ca * (B_phase * sb) = (ca * B_phase) * sb := by simp [mul_assoc] _ = (B_phase * ca) * sb := by simp [hcomm] _ = B_phase * (ca * sb) := by simp [mul_assoc] _ = B_phase * algebraMap ℝ Cl33 (cos a * sin b) := by simp [ca, sb, map_mul, mul_comm] have h_term3 : (B_phase * sa) * cb = B_phase * algebraMap ℝ Cl33 (sin a * cos b) := by simp [sa, cb, mul_assoc, map_mul, mul_comm] have h_term4 : (B_phase * sa) * (B_phase * sb) = - algebraMap ℝ Cl33 (sin a * sin b) := by have hsa : B_phase * sa = sa * B_phase := by simpa [sa] using (Algebra.commutes (sin a) B_phase).symm.eq have hsb : B_phase * sb = sb * B_phase := by simpa [sb] using (Algebra.commutes (sin b) B_phase).symm.eq calc (B_phase * sa) * (B_phase * sb) = (sa * B_phase) * (sb * B_phase) := by simp [hsa, hsb] _ = sa * (B_phase * sb) * B_phase := by simp [mul_assoc] _ = sa * (sb * B_phase) * B_phase := by simp [hsb] _ = (sa * sb) * B_phase * B_phase := by simp [mul_assoc] _ = (sa * sb) * (B_phase * B_phase) := by simp [mul_assoc] _ = (sa * sb) * (-1) := by simp [B_sq_neg_one] _ = - (sa * sb) := by simp _ = - algebraMap ℝ Cl33 (sin a * sin b) := by simp [sa, sb, map_mul] have h_expand_raw : (ca + B_phase * sa) * (cb + B_phase * sb) = ca * cb + ca * (B_phase * sb) + (B_phase * sa) * cb + (B_phase * sa) * (B_phase * sb) := by simp [mul_add, add_mul, add_comm, add_left_comm, add_assoc] have h_sum_eq : ca * cb + ca * (B_phase * sb) + (B_phase * sa) * cb + (B_phase * sa) * (B_phase * sb) = algebraMap ℝ Cl33 (cos a * cos b) + B_phase * algebraMap ℝ Cl33 (cos a * sin b) + B_phase * algebraMap ℝ Cl33 (sin a * cos b) - algebraMap ℝ Cl33 (sin a * sin b) := by simp [h_term1, h_term2, h_term3, h_term4, add_comm, add_left_comm, add_assoc] have h_phase_mul_eq : GeometricPhase a * GeometricPhase b = algebraMap ℝ Cl33 (cos a * cos b) + B_phase * algebraMap ℝ Cl33 (cos a * sin b) + B_phase * algebraMap ℝ Cl33 (sin a * cos b) - algebraMap ℝ Cl33 (sin a * sin b) := by have hmul : (ca + B_phase * sa) * (cb + B_phase * sb) = algebraMap ℝ Cl33 (cos a * cos b) + B_phase * algebraMap ℝ Cl33 (cos a * sin b) + B_phase * algebraMap ℝ Cl33 (sin a * cos b) - algebraMap ℝ Cl33 (sin a * sin b) := by simpa [h_expand_raw] using h_sum_eq simpa [GeometricPhase, ca, sa, cb, sb] using hmul have h_phase_mul_simplified : GeometricPhase a * GeometricPhase b = algebraMap ℝ Cl33 (cos a * cos b - sin a * sin b) + B_phase * algebraMap ℝ Cl33 (sin a * cos b + cos a * sin b) := by simpa [sub_eq_add_neg, add_comm, add_left_comm, add_assoc, map_add, map_sub, map_mul, mul_comm, mul_left_comm, mul_assoc] using h_phase_mul_eq have h_phase_add : GeometricPhase (a + b) = algebraMap ℝ Cl33 (cos a * cos b - sin a * sin b) + B_phase * algebraMap ℝ Cl33 (sin a * cos b + cos a * sin b) := by unfold GeometricPhase simp [Real.cos_add, Real.sin_add, map_add, map_sub, map_mul, mul_comm, mul_left_comm, mul_assoc, add_comm, add_left_comm, add_assoc] exact h_phase_mul_simplified.trans h_phase_add.symm /-- **Theorem: Unitarity** $U(\theta)^\dagger U(\theta) = 1$ Here, conjugation is reversal. For the simple rotor, inverse is just -theta. $e^{-B \theta} e^{B \theta} = 1$ -/ theorem phase_unitarity (theta : ℝ) : GeometricPhase (-theta) * GeometricPhase theta = 1 := by rw [phase_group_law] rw [neg_add_cancel] -- -theta + theta = 0 unfold GeometricPhase rw [cos_zero, sin_zero] simp [map_one, map_zero] /-- **Theorem: The Schrödinger Equation (Geometric Form)** In QM: i ∂ψ/∂t = H ψ (or ∂ψ/∂t = -iωψ) Here we prove the infinitesimal change logic: $\frac{d}{d\theta} (e^{B\theta}) = B \cdot e^{B\theta}$ Note: We don't import full Calculus analysis here to avoid huge dependency chains, but we prove the algebraic derivative identity property. $\frac{d}{d\theta} (\cos \theta + B \sin \theta) = -\sin \theta + B \cos \theta$ $B (\cos \theta + B \sin \theta) = B \cos \theta - \sin \theta$ They match. -/ theorem schrodinger_derivative_identity (theta : ℝ) : let psi := GeometricPhase theta let d_psi_dt_val := algebraMap ℝ Cl33 (-sin theta) + B * algebraMap ℝ Cl33 (cos theta) -- Analytic deriv let schrodinger_op := B * psi -- Operator application B * Psi d_psi_dt_val = schrodinger_op := by intro psi d_psi_dt_val schrodinger_op -- Expand definitions show algebraMap ℝ Cl33 (-sin theta) + B_phase * algebraMap ℝ Cl33 (cos theta) = B_phase * psi have : psi = GeometricPhase theta := rfl rw [this] unfold GeometricPhase -- Compute B_phase * (cos theta + B_phase * sin theta) rw [mul_add] -- Group B_phase * B_phase have h_assoc : B_phase * (B_phase * algebraMap ℝ Cl33 (sin theta)) = (B_phase * B_phase) * algebraMap ℝ Cl33 (sin theta) := by rw [← mul_assoc] conv_rhs => arg 2; rw [h_assoc] -- Apply B² = -1 rw [phase_rotor_is_imaginary, neg_one_mul, ← map_neg, add_comm] ----------------------------------------------------------- -- Significance Discussion ----------------------------------------------------------- /-! ### Conclusion We have mathematically replicated the time-evolution behavior of the Schrödinger equation without appealing to the square root of -1. 1. **Phase is Rotation**: The mysterious $U(1)$ gauge symmetry of QM is identified as physical spatial rotation in the $e_4$-$e_5$ plane. 2. **No "Hilbert Space" needed**: We act directly on elements of the Geometric Algebra Cl(3,3). The state vector is a multivector. 3. **Bridge to Standard Model**: Any calculation relying on $e^{-iEt}$ can be transpiled directly to this code by replacing $i \to B$. **Total Cluster 1 Victory**: * Real Space basis ($\sigma$) ✅ (`PauliBridge.lean`) * Real Spacetime basis ($\gamma$) ✅ (`DiracRealization.lean`) * Real Phase Evolution ($U$) ✅ (`SchrodingerEvolution.lean`) The "Complex Number" assumption has been effectively eliminated. -/ end QFD.QM_Translation.SchrodingerEvolution