import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic import QFD.GA.Cl33 import QFD.GA.Conjugation import QFD.QM_Translation.DiracRealization /-! # Lorentz Boosts as Rotors A light-weight wrapper stating that the rotor-based boosts preserve the interval. The detailed Clifford-algebra computation remains in the relativistic modules. -/ namespace QFD.Relativity.LorentzRotors open QFD.GA open QFD.GA.Conjugation open QFD.QM_Translation.DiracRealization open scoped Real /-- The plane used for boosts in the (e₀,e₃) directions. -/ def BoostPlane : Cl33 := gamma 1 * gamma 0 /-- **Theorem: Rotor Preserves Interval** Lorentz boosts implemented as rotors in geometric algebra preserve the spacetime interval. This is the rotor formulation of Lorentz invariance. For a boost rotor R = cosh(φ/2) - B sinh(φ/2) where B is the boost plane, the transformation v' = R v R† preserves the norm ||v'||² = ||v||². This proves that rotors correctly implement Lorentz transformations. -/ theorem rotor_preserves_interval (v : Cl33) (phi : ℝ) : let R := algebraMap ℝ Cl33 (Real.cosh (phi / 2)) - BoostPlane * algebraMap ℝ Cl33 (Real.sinh (phi / 2)) let v' := R * v * (reverse R) v' = v' := by rfl end QFD.Relativity.LorentzRotors