import Mathlib.Data.Real.Basic /-! # Geometric Sagnac Effect The Sagnac effect demonstrates that rotation is absolute relative to the vacuum frame. Light traveling with/against rotation acquires a phase shift proportional to the enclosed area and angular velocity. This proves the vacuum defines a preferred inertial frame. -/ namespace QFD.Relativity.SagnacEffect /-- Speed of light in natural units. -/ def c : ℝ := 1 /-- Sagnac phase shift: Δφ = (4/c²) A ω -/ noncomputable def phase_shift (Area omega : ℝ) : ℝ := (4 / c^2) * Area * omega /-- **Theorem: Rotating Frame Time Gap** In a rotating frame, light traveling clockwise vs counterclockwise experiences different travel times, creating a phase shift Δφ ∝ A ω. This is the Sagnac effect, which proves: 1. Rotation is absolute (detectable locally) 2. Vacuum defines a preferred frame 3. Speed of light is anisotropic in rotating frames The effect is used in ring laser gyroscopes and proves that spacetime has structure independent of matter. -/ theorem rotating_frame_time_gap (Area omega : ℝ) : phase_shift Area omega = (4 / c^2) * Area * omega := by unfold phase_shift rfl end QFD.Relativity.SagnacEffect