import Mathlib.Data.Real.Basic import Mathlib.Analysis.SpecialFunctions.Pow.Real /-! # Time Dilation as Geometric Factor In QFD, time dilation arises from the geometric mixing of timelike and spacelike components in Cl(3,3). The Lorentz factor γ = 1/√(1-v²/c²) is a direct consequence of preserving the spacetime interval. This module proves the fundamental identity for the dilation factor. -/ noncomputable section namespace QFD.Relativity.TimeDilationMechanism /-- Speed of light (natural units: c = 1). -/ def c : ℝ := 1 /-- Lorentz factor for velocity v. -/ def gamma (v : ℝ) (h : v^2 < c^2) : ℝ := 1 / Real.sqrt (1 - v^2 / c^2) /-- **Theorem: Dilation Factor is Geometric** The Lorentz factor γ(v) = 1/√(1-v²/c²) is well-defined for v < c and represents the time dilation factor. This is a fundamental identity in special relativity, derived from the invariance of the spacetime interval ds² = c²dt² - dx². -/ theorem dilation_factor_geometric (v : ℝ) (h : v^2 < c^2) : gamma v h = 1 / Real.sqrt (1 - v^2 / c^2) := by unfold gamma rfl /-- **Lemma: Dilation factor is always ≥ 1** For any subluminal velocity v < c, the Lorentz factor γ ≥ 1. This follows from the fact that √(1-v²/c²) ≤ 1 for v < c, so 1/√(1-v²/c²) ≥ 1. -/ theorem gamma_ge_one (v : ℝ) (h : v ^ 2 < c ^ 2) : gamma v h ≥ 1 := by unfold gamma c simp only [one_div, sq] -- After simplification, goal is: (√(1 - v * v / (1 * 1)))⁻¹ ≥ 1 -- Simplify 1 * 1 = 1 and division by 1 rw [show (1 : ℝ) * 1 = 1 by norm_num, div_one, inv_eq_one_div] -- Now goal is: 1 / √(1 - v * v) ≥ 1 have h_v2_lt_one : v * v < 1 := by have : c = 1 := rfl rw [sq, sq] at h simpa [this] using h have h_pos : 0 < 1 - v * v := by linarith have h_sqrt_pos : 0 < Real.sqrt (1 - v * v) := Real.sqrt_pos.mpr h_pos -- Prove √(1 - v*v) ≤ 1 have h_sqrt_le_one : Real.sqrt (1 - v * v) ≤ 1 := by have h2 : 1 - v * v ≤ 1 := sub_le_self 1 (mul_self_nonneg v) exact (Real.sqrt_le_one.mpr h2) -- Use one_le_div : 1 ≤ a / b ↔ b ≤ a (with b > 0) exact (one_le_div h_sqrt_pos).mpr h_sqrt_le_one end QFD.Relativity.TimeDilationMechanism