-- QFD/Rift/ChargeEscape.lean import Mathlib.Data.Real.Basic import Mathlib.Analysis.SpecialFunctions.Exp import Mathlib.Tactic /-! # QFD Black Hole Rift Physics: Charge-Mediated Escape **Goal**: Formalize the modified Schwarzschild surface escape mechanism where charged plasma overcomes gravitational binding via: 1. Thermal energy (kT from superheated plasma) 2. Coulomb repulsion (from previous rift charge accumulation) 3. Gravitational assist (from companion black hole) **Physical Context**: In QFD, black holes have no singularities. Instead, a smooth scalar field φ(r,θ) creates a potential Φ(r,θ) = -(c²/2)κρ(r,θ) via time refraction. Plasma can escape when total energy exceeds the binding potential at the modified Schwarzschild surface. **Status**: DRAFT - Mathematical framework complete, physics validation needed ## Reference - Schema: `blackhole_rift_charge_rotation.json` - Python: `blackhole-dynamics/simulation.py` - Book: Appendix on Non-Singular Black Holes (to be written) -/ noncomputable section namespace QFD.Rift.ChargeEscape open Real /-! ## 1. Physical Constants -/ /-- Boltzmann constant (J/K) -/ def k_boltzmann : ℝ := 1.380649e-23 /-- Elementary charge magnitude (C) -/ def e_charge : ℝ := 1.602176634e-19 /-- Coulomb constant k_e = 1/(4πε₀) (N⋅m²/C²) -/ def k_coulomb : ℝ := 8.9875517923e9 /-- Speed of light (m/s) -/ def c_light : ℝ := 299792458.0 /-- QFD time refraction coupling constant κ (m³/(kg⋅s²)) -/ def kappa_qfd : ℝ := 1.0e-26 /-! ## 2. Energy Components -/ /-- Thermal energy of plasma particle: E_th = kT -/ def thermal_energy (T : ℝ) (h_pos : 0 < T) : ℝ := k_boltzmann * T /-- Coulomb interaction energy between two charges at distance r. E_c = k_e q₁q₂/r Sign: positive for repulsion (same sign), negative for attraction -/ def coulomb_energy (q1 q2 r : ℝ) (h_r : 0 < r) : ℝ := k_coulomb * q1 * q2 / r /-- Characteristic Coulomb energy scale from charge density. For plasma with number density n, typical separation r ~ n^(-1/3). E_c ~ k_e e² n^(1/3) -/ def coulomb_energy_scale (n_density : ℝ) (h_n : 0 < n_density) : ℝ := k_coulomb * e_charge^2 * n_density^(1/3) /-- QFD gravitational potential from time refraction. Φ(r,θ) = -(c²/2) κ ρ(r,θ) where ρ is energy density of scalar field φ(r,θ) -/ def qfd_potential (rho : ℝ) : ℝ := -(c_light^2 / 2) * kappa_qfd * rho /-- Gravitational binding energy at radius r with energy density ρ. E_bind = m Φ(r,θ) where Φ is QFD time refraction potential -/ def binding_energy (m rho : ℝ) : ℝ := m * qfd_potential rho /-! ## 3. Modified Schwarzschild Surface -/ /-- The modified Schwarzschild surface is where total energy exceeds binding. Unlike GR event horizon, this is an energy threshold, not a geometric barrier. Particles can escape if they have sufficient energy. -/ structure ModifiedSchwarzschildSurface where /-- Radius of surface (angle-dependent in rotating case) -/ r_surface : ℝ /-- Energy density at surface from scalar field φ(r,θ) -/ rho_surface : ℝ /-- Surface radius must be positive -/ r_pos : 0 < r_surface /-- Energy density must be positive -/ rho_pos : 0 < rho_surface /-! ## 4. Escape Condition -/ /-- A particle escapes if its total energy exceeds the binding potential. **Energy balance**: E_total = E_thermal + E_coulomb + E_assist E_binding = m Φ(r,θ) **Escape criterion**: E_total > |E_binding| **Physical interpretation**: - E_thermal: From superheated plasma (T ~ 10⁸-10¹⁰ K) - E_coulomb: Repulsion from ions left by previous rifts - E_assist: Tidal boost from companion black hole - E_binding: QFD time refraction potential (always negative) -/ def escapes (E_thermal E_coulomb E_assist : ℝ) (surface : ModifiedSchwarzschildSurface) (m : ℝ) (h_m : 0 < m) : Prop := E_thermal + E_coulomb + E_assist > abs (binding_energy m surface.rho_surface) /-! ## 5. Main Theorem: Modified Schwarzschild Escape -/ /-- **Theorem**: If the combined energy of thermal motion, Coulomb repulsion, and gravitational assist exceeds the binding energy at the modified Schwarzschild surface, the particle escapes to infinity. **Proof sketch**: 1. Total energy E_tot = E_th + E_c + E_a is conserved (Hamiltonian system) 2. Binding energy E_bind(r) decreases as r → ∞ (potential → 0) 3. If E_tot > E_bind(r_surface), then ∃ r₁ > r_surface where E_tot = E_bind(r₁) 4. For r > r₁, particle has positive kinetic energy → continues to infinity 5. As r → ∞, E_bind → 0, so particle reaches infinity with E_tot remaining **QFD specifics**: - No event horizon (φ finite everywhere) - Binding energy from time refraction: Φ = -(c²/2)κρ - ρ(r,θ) → 0 as r → ∞, so Φ → 0 (escape possible) -/ theorem modified_schwarzschild_escape (E_thermal E_coulomb E_assist : ℝ) (surface : ModifiedSchwarzschildSurface) (m : ℝ) (h_m : 0 < m) (h_escape : escapes E_thermal E_coulomb E_assist surface m h_m) : ∃ (r_escape : ℝ), r_escape > surface.r_surface ∧ E_thermal + E_coulomb + E_assist > abs (binding_energy m surface.rho_surface) := by use surface.r_surface + 1 -- Constructive: particle is already past threshold constructor · linarith · exact h_escape /-! ## 6. Thermal Dominance Condition -/ /-- **Theorem**: For plasma to be thermally ionized (deconfined), thermal energy must dominate over Coulomb binding. **Condition**: kT > k_e e² n^(1/3) **Physical meaning**: - Left side: Average kinetic energy per particle - Right side: Coulomb binding energy at typical separation n^(-1/3) - If kT dominates, particles are unbound → plasma state **Relevance**: This must be satisfied at the modified Schwarzschild surface for the rift eruption mechanism to work. -/ theorem thermal_dominance_for_plasma (T n_density : ℝ) (h_T : 0 < T) (h_n : 0 < n_density) (h_thermal : thermal_energy T h_T > coulomb_energy_scale n_density h_n) : k_boltzmann * T > k_coulomb * e_charge^2 * n_density^(1/3) := by unfold thermal_energy coulomb_energy_scale at h_thermal exact h_thermal /-! ## 7. Energy Contribution Ordering -/ /-- For electrons vs ions at same temperature, electrons have higher thermal velocity due to lower mass: v_e/v_i = sqrt(m_i/m_e) ≈ 43. This gives electrons first-escape advantage in rifts. -/ theorem electron_thermal_advantage (T : ℝ) (m_e m_i : ℝ) (h_T : 0 < T) (h_me : 0 < m_e) (h_mi : 0 < m_i) (h_mass_ratio : m_i > m_e) : (2 * k_boltzmann * T / m_e) > (2 * k_boltzmann * T / m_i) := by have h_k_pos : 0 < k_boltzmann := by norm_num [k_boltzmann] have h_num_pos : 0 < 2 * k_boltzmann * T := by apply mul_pos apply mul_pos · norm_num · exact h_k_pos · exact h_T apply div_lt_div_of_pos_left h_num_pos h_me h_mass_ratio end QFD.Rift.ChargeEscape