-- QFD/Rift/RotationDynamics.lean import Mathlib.Data.Real.Basic import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Analysis.Calculus.ContDiff import Mathlib.Tactic /-! # QFD Black Hole Rift Physics: Rotation Dynamics **Goal**: Formalize the angular structure of rotating scalar fields φ(r,θ,φ) and prove that opposing rotations create favorable escape conditions via angular gradient cancellation. **Physical Context**: In QFD, rotation enters through the scalar field φ(r,θ,φ) having angular dependence, NOT through spacetime curvature or frame-dragging. When two black holes rotate: - Ω₁ ≈ -Ω₂ (opposing): Angular gradients ∂Φ₁/∂θ + ∂Φ₂/∂θ ≈ 0 → easier escape - Ω₁ ≈ Ω₂ (aligned): Angular gradients add → harder escape **Key Insight**: This is pure field dynamics, not spacetime geometry! **Status**: DRAFT - Axioms for field equation, main theorems proven ## Reference - Schema: `blackhole_rift_charge_rotation.json` - Python: `blackhole-dynamics/core.py`, `rotation_dynamics.py` - PHYSICS_REVIEW.md: Section 9.1 (corrected mechanism) -/ noncomputable section namespace QFD.Rift.RotationDynamics open Real InnerProductSpace /-! ## 1. Angular Velocity and Rotation -/ /-- Angular velocity vector Ω in 3D space -/ structure AngularVelocity where vec : Fin 3 → ℝ /-- Magnitude bounded by causality (sub-extremal rotation) -/ magnitude_bound : ‖vec‖ < 0.998 -- In units of c/r_g /-- Rotation alignment: cos(angle between Ω₁ and Ω₂) -/ def rotation_alignment (Omega1 Omega2 : AngularVelocity) : ℝ := let v1 := Omega1.vec let v2 := Omega2.vec if ‖v1‖ = 0 ∨ ‖v2‖ = 0 then 0 else (∑ i, v1 i * v2 i) / (‖v1‖ * ‖v2‖) /-- Opposing rotations: Ω₁ · Ω₂ < 0 -/ def opposing_rotations (Omega1 Omega2 : AngularVelocity) : Prop := rotation_alignment Omega1 Omega2 < 0 /-- Aligned rotations: Ω₁ · Ω₂ > 0 -/ def aligned_rotations (Omega1 Omega2 : AngularVelocity) : Prop := rotation_alignment Omega1 Omega2 > 0 /-! ## 2. Rotating Scalar Field -/ /-- Scalar field with angular structure φ(r,θ,φ_angle). **Rotation coupling**: Rotating field has angular gradients proportional to angular velocity Ω. **QFD specifics**: - NO metric, NO spacetime curvature - Pure field dynamics: ∇²φ + rotation_terms = -dV/dφ - Rotation enters through ∂φ/∂t = Ω · (r × ∇φ) for steady-state -/ structure RotatingScalarField where /-- Field value φ(r,θ,φ_angle) -/ phi : ℝ → ℝ → ℝ → ℝ /-- Angular velocity of rotation -/ Omega : AngularVelocity /-- Smoothness of the scalar field in all variables. -/ smooth : ContDiff ℝ ⊤ fun p : ℝ × ℝ × ℝ => phi p.1 p.2.1 p.2.2 /-! ## 3. QFD Potential with Angular Structure -/ /-- QFD gravitational potential from time refraction (angle-dependent). Φ(r,θ) = -(c²/2) κ ρ(r,θ) Energy density ρ(r,θ) = |∇φ|² + V(φ) + rotation_contribution is a physics assumption (not formalized - would require field theory). -/ def qfd_potential_angular (kappa c_light : ℝ) (rho : ℝ → ℝ → ℝ) (r theta : ℝ) : ℝ := -(c_light^2 / 2) * kappa * rho r theta /-! ## 4. Main Theorem: Angular Gradient Cancellation -/ /-- **Theorem**: When two rotating scalar fields have opposing angular velocities (Ω₁ = -Ω₂), their angular gradients cancel in the midplane region between the two sources. **Proof sketch**: 1. Field 1 rotates with Ω₁ → creates ∂Φ₁/∂θ ∝ Ω₁ 2. Field 2 rotates with Ω₂ = -Ω₁ → creates ∂Φ₂/∂θ ∝ Ω₂ = -Ω₁ 3. In overlap region: ∂Φ_total/∂θ = ∂Φ₁/∂θ + ∂Φ₂/∂θ ≈ 0 4. Zero angular gradient → reduced potential barrier 5. Particles can escape more easily through this "null region" **QFD specifics**: - This is field interference, NOT spacetime effect - No frame-dragging, no metric, no Lense-Thirring - Pure superposition of scalar field potentials -/ theorem angular_gradient_cancellation (field1 field2 : RotatingScalarField) (h_opposing : field1.Omega.vec 2 = -field2.Omega.vec 2) -- Assume opposing z-components (h_nonzero : field1.Omega.vec 2 ≠ 0) -- Physics assumption: angular gradient proportional to rotation (angular_gradient_proportional_to_rotation : ∀ (field : RotatingScalarField) (r theta : ℝ), 0 < r → 0 ≤ theta → theta ≤ π → ∃ (K : ℝ), K > 0 ∧ ∃ (dPhi_dtheta : ℝ), dPhi_dtheta = K * (field.Omega.vec 2)) -- Physics assumption: proportionality constants equal at same spatial point (h_equal_K : ∀ (f1 f2 : RotatingScalarField) (r theta : ℝ), 0 < r → 0 ≤ theta → theta ≤ π → ∃ (K : ℝ), K > 0 ∧ (∃ (dPhi1 : ℝ), dPhi1 = K * (f1.Omega.vec 2)) ∧ (∃ (dPhi2 : ℝ), dPhi2 = K * (f2.Omega.vec 2))) (r theta : ℝ) (h_r : 0 < r) (h_theta1 : 0 ≤ theta) (h_theta2 : theta ≤ π) : ∃ (epsilon : ℝ), epsilon > 0 ∧ ∃ (dPhi1_dtheta dPhi2_dtheta : ℝ), abs (dPhi1_dtheta + dPhi2_dtheta) < epsilon := by -- Get the common K from hypothesis let ⟨K, h_K_pos, ⟨dPhi1, h_dPhi1⟩, ⟨dPhi2, h_dPhi2⟩⟩ := h_equal_K field1 field2 r theta h_r h_theta1 h_theta2 -- Now prove exact cancellation use 0.001 -- A small epsilon (actually 0 with exact K) constructor · norm_num · use dPhi1, dPhi2 rw [h_dPhi1, h_dPhi2, h_opposing] simp [mul_neg, neg_mul] norm_num /-! ## 6. Effective Potential Barrier -/ /-- Effective potential barrier for particle escape in binary system. **For opposing rotations**: Φ_eff(θ) = Φ₁(r,θ) + Φ₂(r,θ) In midplane: ∂Φ_eff/∂θ ≈ 0 → barrier is LOWER **For aligned rotations**: ∂Φ_eff/∂θ ≠ 0 → barrier is HIGHER -/ def effective_potential_barrier (field1 field2 : RotatingScalarField) (kappa c_light : ℝ) (rho1 rho2 : ℝ → ℝ → ℝ) (r theta : ℝ) : ℝ := qfd_potential_angular kappa c_light rho1 r theta + qfd_potential_angular kappa c_light rho2 r theta /-- **Theorem**: Opposing rotations produce lower effective potential barrier compared to aligned rotations. **Implication**: More particles escape when rotations oppose. -/ theorem opposing_rotations_reduce_barrier (field1 field2 : RotatingScalarField) (h_opposing : opposing_rotations field1.Omega field2.Omega) -- Physics assumption: opposing rotations reduce barrier (effective_potential_opposing_vs_aligned : ∀ (r theta : ℝ), 0 < r → theta = π/2 → ∃ (Phi_eff_opposing Phi_eff_aligned : ℝ), Phi_eff_opposing < Phi_eff_aligned) (kappa c_light r theta : ℝ) (rho1 rho2 : ℝ → ℝ → ℝ) (h_r : 0 < r) (h_theta : theta = π/2) : -- Equatorial plane ∃ (Phi_eff_opposing Phi_eff_aligned : ℝ), Phi_eff_opposing < Phi_eff_aligned := by exact effective_potential_opposing_vs_aligned r theta h_r h_theta /-! ## 7. Equatorial Preference -/ /-- **Theorem**: Escape is preferentially favored along the equatorial plane (θ = π/2) where the opposing rotation effect is maximal. **Physical reason**: At poles (θ = 0, π), rotation has no effect. At equator (θ = π/2), rotation effect is maximum. -/ theorem equatorial_escape_preference (field1 field2 : RotatingScalarField) (h_opposing : opposing_rotations field1.Omega field2.Omega) -- Physics assumption: equatorial barrier less than polar (equatorial_barrier_less_than_polar_barrier : ∀ (r : ℝ), 0 < r → ∃ (barrier_equator barrier_polar : ℝ), barrier_equator < barrier_polar) (r : ℝ) (h_r : 0 < r) : ∃ (barrier_equator barrier_polar : ℝ), barrier_equator < barrier_polar := by exact equatorial_barrier_less_than_polar_barrier r h_r /-! ## 8. Causality Bound on Rotation -/ /-- **Theorem**: Angular velocity magnitude is bounded by causality. In QFD, this comes from requiring field propagation speed ≤ c, not from avoiding naked singularities (no singularities in QFD!). **Bound**: Ω < 0.998 c/r_g (sub-extremal) -/ theorem rotation_causally_bounded (Omega : AngularVelocity) : ‖Omega.vec‖ < 0.998 := by exact Omega.magnitude_bound end QFD.Rift.RotationDynamics