import QFD.Schema.Couplings import Mathlib.Data.Real.Basic import Mathlib.Order.Bounds.Basic import Mathlib.Tactic.Linarith set_option linter.style.commandStart false noncomputable section namespace QFD.Schema open Dimensions /-! # Parameter Constraints for Grand Solver This file defines the valid parameter space for QFD optimization. Each parameter has physical bounds derived from: 1. **Positivity**: Energy scales must be positive 2. **Normalization**: Geometric factors bounded by 1 3. **Physical ranges**: Experimental constraints (e.g., 50 ≤ k_J ≤ 100) 4. **Consistency**: Cross-parameter relationships ## Constraint Types - `RangeConstraint`: min ≤ param ≤ max - `PositivityConstraint`: param > 0 - `NormalizedConstraint`: 0 ≤ param ≤ 1 - `RelationConstraint`: f(param1, param2, ...) must hold -/ /-! ## Individual Parameter Constraints -/ /-- Nuclear parameter constraints -/ structure NuclearConstraints (p : NuclearParams) : Prop where -- Core compression coefficients c1_positive : p.c1.val > 0 c1_range : 0.5 < p.c1.val ∧ p.c1.val < 1.5 c2_positive : p.c2.val > 0 c2_range : 0.0 < p.c2.val ∧ p.c2.val < 0.1 -- Potential depth (nuclear well) V4_positive : p.V4.val > 0 V4_range : 1e6 < p.V4.val ∧ p.V4.val < 1e9 -- eV scale -- Mass scale k_c2_positive : p.k_c2.val > 0 k_c2_range : 1e5 < p.k_c2.val ∧ p.k_c2.val < 1e7 -- eV scale -- Dimensionless couplings alpha_n_positive : p.alpha_n.val > 0 alpha_n_range : 1.0 < p.alpha_n.val ∧ p.alpha_n.val < 10.0 beta_n_positive : p.beta_n.val > 0 beta_n_range : 1.0 < p.beta_n.val ∧ p.beta_n.val < 10.0 gamma_e_positive : p.gamma_e.val > 0 gamma_e_range : 1.0 < p.gamma_e.val ∧ p.gamma_e.val < 10.0 -- Genesis Constants relationship (proven empirically for hydrogen) genesis_compatible : |p.alpha_n.val - 3.5| < 1.0 ∧ |p.beta_n.val - 3.9| < 1.0 ∧ |p.gamma_e.val - 5.5| < 2.0 /-- Cosmological parameter constraints -/ structure CosmoConstraints (p : CosmoParams) : Prop where -- Hubble-like parameter k_J_positive : p.k_J.val > 0 k_J_range : 50.0 < p.k_J.val ∧ p.k_J.val < 100.0 -- km/s/Mpc -- Conformal time scale eta_prime_nonneg : p.eta_prime.val ≥ 0 eta_prime_range : 0.0 ≤ p.eta_prime.val ∧ p.eta_prime.val < 0.1 -- Plasma dispersion A_plasma_nonneg : p.A_plasma.val ≥ 0 A_plasma_range : 0.0 ≤ p.A_plasma.val ∧ p.A_plasma.val < 1.0 -- Vacuum energy density rho_vac_nonneg : p.rho_vac.val ≥ 0 rho_vac_range : 0.0 < p.rho_vac.val ∧ p.rho_vac.val < 1e-26 -- kg/m³ -- Dark energy equation of state w_dark_range : -2.0 < p.w_dark.val ∧ p.w_dark.val < 0.0 /-- Particle parameter constraints -/ structure ParticleConstraints (p : ParticleParams) : Prop where -- Geometric charge coupling (normalized) g_c_normalized : 0.0 ≤ p.g_c.val ∧ p.g_c.val ≤ 1.0 g_c_physical : 0.9 < p.g_c.val ∧ p.g_c.val < 1.0 -- Near unity -- Weak potential scale V2_nonneg : p.V2.val ≥ 0 V2_range : 0.0 < p.V2.val ∧ p.V2.val < 1e12 -- eV scale -- Ricker wavelet width lambda_R_positive : p.lambda_R.val > 0 lambda_R_range : 0.1 < p.lambda_R.val ∧ p.lambda_R.val < 10.0 -- Electron mass seed mu_e_positive : p.mu_e.val > 0 mu_e_physical : 5e5 < p.mu_e.val ∧ p.mu_e.val < 6e5 -- ~511 keV -- Neutrino mass seed mu_nu_positive : p.mu_nu.val > 0 mu_nu_range : 1e-3 < p.mu_nu.val ∧ p.mu_nu.val < 1e0 -- eV scale /-! ## Global Constraints -/ /-- Valid parameter set satisfies all domain constraints -/ structure ValidParameters (params : GrandUnifiedParameters) : Prop where nuclear_valid : NuclearConstraints params.nuclear cosmo_valid : CosmoConstraints params.cosmo particle_valid : ParticleConstraints params.particle /-! ## Cross-Domain Consistency Relations -/ /-- Consistency between nuclear and particle sectors -/ def nuclear_particle_consistent (n : NuclearParams) (p : ParticleParams) : Prop := -- Geometric charge coupling affects nuclear binding let nuclear_suppression := n.gamma_e.val * p.g_c.val 3.0 < nuclear_suppression ∧ nuclear_suppression < 8.0 /-- Consistency between cosmology and particle sectors -/ def cosmo_particle_consistent (c : CosmoParams) (p : ParticleParams) : Prop := -- Vacuum energy and particle masses related let mass_vac_ratio := p.mu_e.val / c.rho_vac.val mass_vac_ratio > 0 -- Just a placeholder for now /-- Full consistency across all domains -/ structure CrossDomainConsistency (params : GrandUnifiedParameters) : Prop where np_consistent : nuclear_particle_consistent params.nuclear params.particle cp_consistent : cosmo_particle_consistent params.cosmo params.particle /-! ## Theorems about Parameter Space -/ /-- Theorem: Valid parameter space is non-empty -/ theorem valid_parameters_exist : ∃ (params : GrandUnifiedParameters), ValidParameters params := by -- Construct a default parameter set that satisfies all constraints let default_std : StandardConstants := { c := { val := 3e8 }, -- m/s G := { val := 6.67e-11 }, -- m³/kg/s² hbar := { val := 1.055e-34 }, -- J·s e := { val := 1.602e-19 }, -- C k_B := { val := 1.381e-23 } -- J/K } let default_nuclear_params : NuclearParams := { c1 := { val := 1.0 }, c2 := { val := 0.05 }, V4 := { val := 1e7 }, k_c2 := { val := 1e6 }, alpha_n := { val := 3.5 }, beta_n := { val := 3.9 }, gamma_e := { val := 5.5 } } let default_cosmo_params : CosmoParams := { k_J := { val := 70.0 }, eta_prime := { val := 0.05 }, A_plasma := { val := 0.5 }, rho_vac := { val := 1e-27 }, w_dark := { val := -1.0 } } let default_particle_params : ParticleParams := { g_c := { val := 0.95 }, V2 := { val := 1e11 }, lambda_R := { val := 1.0 }, mu_e := { val := 5.11e5 }, mu_nu := { val := 0.1 } } let default_params : GrandUnifiedParameters := { std := default_std, nuclear := default_nuclear_params, cosmo := default_cosmo_params, particle := default_particle_params } use default_params have h_nuclear : NuclearConstraints default_nuclear_params := by refine { c1_positive := ?_, c1_range := ?_, c2_positive := ?_, c2_range := ?_, V4_positive := ?_, V4_range := ?_, k_c2_positive := ?_, k_c2_range := ?_, alpha_n_positive := ?_, alpha_n_range := ?_, beta_n_positive := ?_, beta_n_range := ?_, gamma_e_positive := ?_, gamma_e_range := ?_, genesis_compatible := ?_ } · simp [default_nuclear_params]; norm_num · constructor <;> (simp [default_nuclear_params]; norm_num) · simp [default_nuclear_params]; norm_num · constructor <;> (simp [default_nuclear_params]; norm_num) · simp [default_nuclear_params]; norm_num · constructor <;> (simp [default_nuclear_params]; norm_num) · simp [default_nuclear_params]; norm_num · constructor <;> (simp [default_nuclear_params]; norm_num) · simp [default_nuclear_params]; norm_num · constructor <;> (simp [default_nuclear_params]; norm_num) · simp [default_nuclear_params]; norm_num · constructor <;> (simp [default_nuclear_params]; norm_num) · simp [default_nuclear_params]; norm_num · constructor <;> (simp [default_nuclear_params]; norm_num) · constructor <;> (simp [default_nuclear_params]; norm_num) have h_cosmo : CosmoConstraints default_cosmo_params := by refine { k_J_positive := ?_, k_J_range := ?_, eta_prime_nonneg := ?_, eta_prime_range := ?_, A_plasma_nonneg := ?_, A_plasma_range := ?_, rho_vac_nonneg := ?_, rho_vac_range := ?_, w_dark_range := ?_ } · simp [default_cosmo_params]; norm_num · constructor <;> (simp [default_cosmo_params]; norm_num) · simp [default_cosmo_params]; norm_num · constructor <;> (simp [default_cosmo_params]; norm_num) · simp [default_cosmo_params]; norm_num · constructor <;> (simp [default_cosmo_params]; norm_num) · simp [default_cosmo_params]; norm_num · constructor <;> (simp [default_cosmo_params]; norm_num) · constructor <;> (simp [default_cosmo_params]; norm_num) have h_particle : ParticleConstraints default_particle_params := by refine { g_c_normalized := ?_, g_c_physical := ?_, V2_nonneg := ?_, V2_range := ?_, lambda_R_positive := ?_, lambda_R_range := ?_, mu_e_positive := ?_, mu_e_physical := ?_, mu_nu_positive := ?_, mu_nu_range := ?_ } · constructor <;> (simp [default_particle_params]; norm_num) · constructor <;> (simp [default_particle_params]; norm_num) · simp [default_particle_params]; norm_num · constructor <;> (simp [default_particle_params]; norm_num) · simp [default_particle_params]; norm_num · constructor <;> (simp [default_particle_params]; norm_num) · simp [default_particle_params]; norm_num · constructor <;> (simp [default_particle_params]; norm_num) · simp [default_particle_params]; norm_num · constructor <;> (simp [default_particle_params]; norm_num) exact ⟨h_nuclear, h_cosmo, h_particle⟩ /-- Theorem: Valid parameter space is bounded (compact) -/ theorem parameter_space_bounded : ∀ (params : GrandUnifiedParameters), ValidParameters params → ∃ (M : ℝ), M > 0 ∧ (params.nuclear.V4.val < M) ∧ (params.cosmo.k_J.val < M) ∧ (params.particle.mu_e.val < M) := by intro params h_valid rcases h_valid with ⟨h_nuclear, h_cosmo, h_particle⟩ -- Define M to be larger than all upper bounds use 1e13 constructor · norm_num · constructor · have h_V4_range := h_nuclear.V4_range linarith · constructor · have h_kJ_range := h_cosmo.k_J_range linarith · have h_mu_e_range := h_particle.mu_e_physical linarith /-- Theorem: Parameter constraints are satisfiable -/ theorem constraints_satisfiable (params : GrandUnifiedParameters) : ValidParameters params → CrossDomainConsistency params → ∃ (solution : GrandUnifiedParameters), ValidParameters solution ∧ CrossDomainConsistency solution := by intro h_valid h_consistent -- We are given a valid and consistent parameter set `params`. -- We can use `params` itself as the witness for the existence. use params /-! ## Helper Functions for Validation -/ /-- Check if nuclear parameters satisfy constraints (computable version) -/ def check_nuclear_constraints (p : NuclearParams) : Bool := (p.c1.val > 0.5 && p.c1.val < 1.5) && (p.c2.val > 0.0 && p.c2.val < 0.1) && (p.V4.val > 1e6 && p.V4.val < 1e9) && (p.k_c2.val > 1e5 && p.k_c2.val < 1e7) && (p.alpha_n.val > 1.0 && p.alpha_n.val < 10.0) && (p.beta_n.val > 1.0 && p.beta_n.val < 10.0) && (p.gamma_e.val > 1.0 && p.gamma_e.val < 10.0) /-- Check if cosmo parameters satisfy constraints (computable version) -/ def check_cosmo_constraints (p : CosmoParams) : Bool := (p.k_J.val > 50.0 && p.k_J.val < 100.0) && (p.eta_prime.val >= 0.0 && p.eta_prime.val < 0.1) && (p.A_plasma.val >= 0.0 && p.A_plasma.val < 1.0) && (p.rho_vac.val > 0.0 && p.rho_vac.val < 1e-26) && (p.w_dark.val > -2.0 && p.w_dark.val < 0.0) /-- Check if particle parameters satisfy constraints (computable version) -/ def check_particle_constraints (p : ParticleParams) : Bool := (p.g_c.val >= 0.9 && p.g_c.val <= 1.0) && (p.V2.val > 0.0 && p.V2.val < 1e12) && (p.lambda_R.val > 0.1 && p.lambda_R.val < 10.0) && (p.mu_e.val > 5e5 && p.mu_e.val < 6e5) && (p.mu_nu.val > 1e-3 && p.mu_nu.val < 1e0) /-- Check all constraints (computable validation) -/ def check_all_constraints (params : GrandUnifiedParameters) : Bool := check_nuclear_constraints params.nuclear && check_cosmo_constraints params.cosmo && check_particle_constraints params.particle /-! ## Sensitivity Analysis Helpers -/ /-- Classify parameter sensitivity based on typical impact -/ inductive Sensitivity | Low -- Changes < 1% effect on observables | Medium -- Changes 1-10% effect | High -- Changes > 10% effect deriving DecidableEq, Repr /-- Parameter sensitivity classification -/ def parameter_sensitivity : String → Sensitivity | "V4" => Sensitivity.High -- Nuclear potential depth | "k_J" => Sensitivity.High -- Hubble-like expansion | "g_c" => Sensitivity.High -- Geometric charge | "mu_e" => Sensitivity.High -- Electron mass | "alpha_n" => Sensitivity.Medium -- Nuclear coupling | "c1" => Sensitivity.Medium -- Surface term | "eta_prime" => Sensitivity.Medium -- FDR opacity | "lambda_R" => Sensitivity.Low -- Wavelet width | "w_dark" => Sensitivity.Low -- Dark EOS | _ => Sensitivity.Medium -- Default end QFD.Schema