import Mathlib.Analysis.InnerProductSpace.Adjoint import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Analysis.Normed.Group.Basic import Mathlib.Algebra.Order.Field.Basic noncomputable section open InnerProductSpace namespace QFD variable {H : Type*} [NormedAddCommGroup H] [InnerProductSpace ℝ H] [CompleteSpace H] /-! ## 1. Geometric Operators We define the structure of the operators governing the QFD soliton. -/ /-- The internal rotation generator `J`. It corresponds to a physical bivector. Property: It must be Skew-Adjoint (J† = -J). -/ structure BivectorGenerator (H : Type*) [NormedAddCommGroup H] [InnerProductSpace ℝ H] [CompleteSpace H] where op : H →L[ℝ] H skew_adj : ContinuousLinearMap.adjoint op = -op /-- The stability operator `L` (Hessian of Energy). Must be Self-Adjoint. -/ structure StabilityOperator (H : Type*) [NormedAddCommGroup H] [InnerProductSpace ℝ H] [CompleteSpace H] where op : H →L[ℝ] H self_adj : ContinuousLinearMap.adjoint op = op variable (J : BivectorGenerator H) variable (L : StabilityOperator H) /-! ## 2. Derived Geometric Structures -/ /-- The Casimir Operator (Geometric Spin Squared): C = -J² = J†J -/ def CasimirOperator : H →L[ℝ] H := -(J.op ∘L J.op) /-- The Symmetric Sector (Spacetime): States with zero internal spin (Kernel of C). -/ def H_sym : Submodule ℝ H := LinearMap.ker (CasimirOperator J) /-- The Orthogonal Sector (Extra Dimensions): States orthogonal to the symmetric sector. -/ def H_orth : Submodule ℝ H := (H_sym J).orthogonal /-! ## 3. The Structural Theorems (Axioms of the Soliton) We explicitly state the properties required of the physical vacuum. -/ /-- Hypothesis 1: Topological Quantization. Non-zero winding modes have at least unit geometric angular momentum. -/ def HasQuantizedTopology (J : BivectorGenerator H) : Prop := ∀ x ∈ H_orth J, @inner ℝ H _ (x : H) (CasimirOperator J x) ≥ ‖x‖^2 /-- Hypothesis 2: Energy Dominance (The Centrifugal Barrier). The energy cost of stabilizing the particle (L) dominates the angular momentum (C). -/ def HasCentrifugalBarrier (L : StabilityOperator H) (J : BivectorGenerator H) (barrier : ℝ) : Prop := ∀ x : H, @inner ℝ H _ x (L.op x) ≥ barrier * @inner ℝ H _ x (CasimirOperator J x) /-! ## 4. The Spectral Gap Theorem Proof that 4D emergence is necessary if the barrier is positive. -/ theorem spectral_gap_theorem (barrier : ℝ) (h_pos : barrier > 0) (h_quant : HasQuantizedTopology J) (h_dom : HasCentrifugalBarrier L J barrier) : ∃ ΔE > 0, ∀ η ∈ H_orth J, @inner ℝ H _ (η : H) (L.op η) ≥ ΔE * ‖η‖^2 := by -- We claim the gap ΔE is exactly the barrier strength use barrier constructor -- 1. Proof that Gap > 0 · exact h_pos -- 2. Proof of the Energy Inequality · intro η h_eta_orth -- Retrieve specific inequalities for this state η have step1 : @inner ℝ H _ (η : H) (L.op η) ≥ barrier * @inner ℝ H _ (η : H) (CasimirOperator J η) := h_dom η have step2 : @inner ℝ H _ (η : H) (CasimirOperator J η) ≥ ‖η‖^2 := h_quant η h_eta_orth -- Chain the logic using `calc` for rigor calc @inner ℝ H _ (η : H) (L.op η) _ ≥ barrier * @inner ℝ H _ (η : H) (CasimirOperator J η) := step1 _ ≥ barrier * (1 * ‖η‖^2) := by -- Multiply inequality step2 by positive barrier rw [one_mul] apply mul_le_mul_of_nonneg_left step2 (le_of_lt h_pos) _ = barrier * ‖η‖^2 := by ring end QFD