import Mathlib import QFD.Topology.FormFactorCore import QFD.Physics.Postulates /-! # QFD: Topological Form Factors Formal specification of the geometric mechanism behind the Alpha gap. This module defines the *form factor* functional (bulk vs surface energy) and states that spherical (nuclear) and toroidal (leptonic) solitons must have different ratios purely due to topology. Numerical evaluation is delegated to scripts such as `solve_torus_form_factor.py`. -/ noncomputable section namespace QFD open QFD.Physics /-- Spherical vs toroidal form factors are provably different once the Hill vortex energy integrals are evaluated. Python scripts must supply the associated numerical evidence; Lean captures the logical dependency via the physics postulates. -/ lemma sphere_torus_form_factor_ne (P : QFD.Physics.Model) {ψ_sphere ψ_torus : Field} (h_sphere : is_spherical ψ_sphere) (h_torus : is_toroidal ψ_torus) : form_factor (P.compute_energy ψ_sphere) ≠ form_factor (P.compute_energy ψ_torus) := P.sphere_torus_form_factor_ne h_sphere h_torus /-- **Topological Splitting of Coupling Constants.** If nuclei correspond to spherical solitons and electrons to toroidal vortices, their geometric form factors differ, explaining why `α_strong ≠ α_em`. -/ theorem coupling_depends_on_topology (P : QFD.Physics.Model) (ψ_nuc : Field) (h_nuc : is_spherical ψ_nuc) (ψ_elec : Field) (h_elec : is_toroidal ψ_elec) : let F_nuc := form_factor (P.compute_energy ψ_nuc) let F_elec := form_factor (P.compute_energy ψ_elec) F_nuc ≠ F_elec := by intro F_nuc F_elec exact sphere_torus_form_factor_ne (P := P) h_nuc h_elec /-- Quantity the Python scripts must evaluate to close the alpha gap. -/ def target_alpha_correction (F_nuc F_elec : ℝ) : ℝ := F_nuc / F_elec end QFD