#!/usr/bin/env python3 """ QFD Universe Validation - Zero Dependencies ============================================ Copyright (c) 2026 Tracy McSheery Licensed under the MIT License PURPOSE: -------- This script proves QFD's core claims using ONLY the Python standard library. No numpy, no scipy - just the math module. Copy-paste into any Python 3 REPL. THE CHALLENGE: -------------- Can we derive Nuclear Physics and QED parameters starting ONLY from the Fine Structure Constant α = 1/137.036? THE ANSWER: ----------- YES. Using the Golden Loop equation, we derive: - β = 3.043233 (vacuum stiffness) - c₁ = 0.496351 (nuclear surface coefficient) - 0.01% error - c₂ = 0.328598 (nuclear volume coefficient) - 0.48% error - V₄ = -0.328598 (QED vacuum polarization) - 0.04% error - m_p = 934.8 MeV (proton mass from 4π²/9 geometry) - 0.37% error HOW TO VERIFY: -------------- 1. Run this script: python qfd_proof.py 2. Check the math by hand (all formulas are shown) 3. Compare to Lean4 proofs in projects/Lean4/QFD/ THE GOLDEN LOOP EQUATION: ------------------------- The master equation that connects α to β: 1/α = 2π² × (e^β / β) + 1 This transcendental equation has a unique solution β ≈ 3.043 for α = 1/137. WHY THIS EQUATION? ------------------ The Golden Loop arises from the requirement that the vacuum energy functional be self-consistent. The factor 2π² comes from the solid angle integration over a 6-dimensional phase space (Cl(3,3) algebra). The exponential e^β/β is the partition function of a harmonic oscillator in the stiff vacuum limit. See: projects/Lean4/QFD/Physics/GoldenLoop_Existence.lean for the formal proof. PHYSICAL INTERPRETATION: ------------------------ β = vacuum bulk modulus (stiffness) - Higher β → stiffer vacuum → higher energy to create disturbances - β appears in: nuclear binding, lepton masses, cosmological constant c₁ = ½(1-α) = surface tension coefficient - The ½ comes from the virial theorem (kinetic = ½ potential) - The (1-α) is electromagnetic screening c₂ = 1/β = volume coefficient - Inverse of stiffness → compressibility - Controls saturation of nuclear matter V₄ = -1/β = vacuum polarization - Negative sign → attractive correction to Coulomb potential - Same magnitude as c₂ (not coincidence!) REFERENCES: ----------- - Lean4 proofs: projects/Lean4/QFD/Physics/GoldenLoop_Existence.lean - Shared constants: qfd/shared_constants.py - LOGIC_FORTRESS_STATUS.md for validation summary """ import math # ============================================================================= # THE GOLDEN LOOP SOLVER # ============================================================================= def solve_golden_loop(target_alpha_inv): """ Solve the Golden Loop equation for β (vacuum stiffness). EQUATION: --------- 1/α = 2π² × (e^β / β) + 1 Rearranging: (1/α - 1) = 2π² × (e^β / β) (1/α - 1) / (2π²) = e^β / β Define K = (1/α - 1) / (2π²), then solve: e^β / β = K METHOD: ------- Newton-Raphson iteration (no external dependencies needed). Let f(β) = e^β / β - K = 0 Derivative: f'(β) = d/dβ(e^β / β) = (β·e^β - e^β) / β² = e^β(β - 1) / β² Newton step: β_new = β - f(β) / f'(β) CONVERGENCE: ------------ Starting from β₀ = 3.0, converges to 12 decimal places in ~5 iterations. Args: target_alpha_inv: The value of 1/α (e.g., 137.035999206) Returns: β: The vacuum stiffness parameter (≈ 3.043233) """ # Target value for e^β/β K = (target_alpha_inv - 1) / (2 * math.pi**2) # Initial guess (we know β is around 3 from previous analysis) beta = 3.0 # Newton-Raphson iteration for iteration in range(20): # Current value of e^β/β exp_beta = math.exp(beta) f_beta = exp_beta / beta # Residual: how far from target? residual = f_beta - K # Derivative: d/dβ(e^β/β) = e^β(β-1)/β² f_prime = exp_beta * (beta - 1) / (beta**2) # Newton step beta_new = beta - residual / f_prime # Check convergence if abs(beta_new - beta) < 1e-12: return beta_new beta = beta_new return beta # ============================================================================= # MAIN VALIDATION # ============================================================================= def main(): """ Complete QFD validation from first principles. This function demonstrates the entire derivation chain: α → β → (c₁, c₂, V₄) Every step is shown explicitly so skeptics can verify. """ # ========================================================================= # INPUT: The Fine Structure Constant (THE ONLY INPUT) # ========================================================================= # We use α⁻¹ = 137.035999206, which is between: # - CODATA 2018: 137.035999084(21) # - CODATA 2022: 137.035999177(21) # The difference is in the 9th decimal place and doesn't affect our results. alpha_inv = 137.035999206 alpha = 1.0 / alpha_inv print("=" * 70) print("QFD UNIVERSE VALIDATION - Zero Dependencies") print("=" * 70) print() print("This script derives nuclear and QED parameters from α alone.") print("No numpy, no scipy - just Python's math module.") print() print("-" * 70) print("INPUT: Fine Structure Constant (the ONLY measured input)") print("-" * 70) print() print(f" α⁻¹ = {alpha_inv}") print(f" α = {alpha:.12f}") print() print(" Source: CODATA (between 2018 and 2022 values)") print() # ========================================================================= # STEP 1: Derive β from the Golden Loop equation # ========================================================================= print("-" * 70) print("STEP 1: Golden Loop Equation → Vacuum Stiffness β") print("-" * 70) print() print(" The Master Equation:") print() print(" 1/α = 2π² × (e^β / β) + 1") print() print(" Rearranging to solve for β:") print() print(" e^β / β = (1/α - 1) / (2π²)") print() # Calculate the target K = (alpha_inv - 1) / (2 * math.pi**2) print(f" Target: K = ({alpha_inv} - 1) / (2 × π²)") print(f" = {alpha_inv - 1:.6f} / {2 * math.pi**2:.6f}") print(f" = {K:.6f}") print() # Solve for β beta = solve_golden_loop(alpha_inv) print(f" Solving e^β/β = {K:.6f} using Newton-Raphson...") print() print(f" RESULT: β = {beta:.9f}") print() # Verify the solution check_K = math.exp(beta) / beta check_alpha_inv = 2 * math.pi**2 * check_K + 1 print(" VERIFICATION:") print(f" e^β / β = e^{beta:.4f} / {beta:.4f}") print(f" = {math.exp(beta):.4f} / {beta:.4f}") print(f" = {check_K:.6f}") print() print(f" 1/α = 2π² × {check_K:.6f} + 1") print(f" = {check_alpha_inv:.9f}") print(f" Expected: {alpha_inv:.9f}") print(f" Match: {'✓ YES' if abs(check_alpha_inv - alpha_inv) < 1e-6 else '✗ NO'}") print() # ========================================================================= # STEP 2: Derive Nuclear Coefficients # ========================================================================= print("-" * 70) print("STEP 2: Nuclear Physics Predictions") print("-" * 70) print() print(" The Fundamental Soliton Equation for nuclear binding:") print() print(" Z_stable(A) = c₁ × A^(2/3) + c₂ × A") print() print(" Where:") print(" c₁ = surface coefficient (A^(2/3) term)") print(" c₂ = volume coefficient (A term)") print() # Surface coefficient: c₁ = ½(1 - α) c1_derived = 0.5 * (1 - alpha) c1_empirical = 0.496297 # NuBase 2020 c1_error = abs(c1_derived - c1_empirical) / c1_empirical * 100 print(" PREDICTION 1: Surface Coefficient") print() print(" Formula: c₁ = ½(1 - α)") print() print(" Physical meaning:") print(" - The ½ comes from the virial theorem") print(" - The (1-α) is electromagnetic screening") print() print(f" c₁ = ½ × (1 - {alpha:.10f})") print(f" = ½ × {1 - alpha:.10f}") print(f" = {c1_derived:.6f}") print() print(f" Empirical value: {c1_empirical:.6f} (NuBase 2020)") print(f" Error: {c1_error:.4f}%") print() # Volume coefficient: c₂ = 1/β c2_derived = 1.0 / beta c2_empirical = 0.32704 # NuBase 2020 c2_error = abs(c2_derived - c2_empirical) / c2_empirical * 100 print(" PREDICTION 2: Volume Coefficient") print() print(" Formula: c₂ = 1/β") print() print(" Physical meaning:") print(" - Inverse of vacuum stiffness = compressibility") print(" - Controls nuclear matter saturation density") print() print(f" c₂ = 1 / {beta:.6f}") print(f" = {c2_derived:.6f}") print() print(f" Empirical value: {c2_empirical:.6f} (NuBase 2020)") print(f" Error: {c2_error:.4f}%") print() # ========================================================================= # STEP 3: Derive QED Parameter # ========================================================================= print("-" * 70) print("STEP 3: QED Vacuum Polarization") print("-" * 70) print() print(" The vacuum polarization coefficient V₄ appears in:") print() print(" a = α/(2π) + V₄×(α/π)² + ...") print() print(" where a = (g-2)/2 is the anomalous magnetic moment.") print() v4_derived = -1.0 / beta v4_qed = -0.328479 # From QED perturbation theory v4_error = abs(v4_derived - v4_qed) / abs(v4_qed) * 100 print(" PREDICTION 3: Vacuum Polarization Coefficient") print() print(" Formula: V₄ = -1/β = -c₂") print() print(" Physical meaning:") print(" - Negative sign → attractive correction") print(" - Same magnitude as c₂ (deep connection!)") print() print(f" V₄ = -1 / {beta:.6f}") print(f" = {v4_derived:.6f}") print() print(f" QED value: {v4_qed:.6f} (Schwinger calculation)") print(f" Error: {v4_error:.4f}%") print() # ========================================================================= # STEP 4: Derive Proton Mass (The Proton Bridge) # ========================================================================= print("-" * 70) print("STEP 4: Proton Mass from Geometry (The Proton Bridge)") print("-" * 70) print() print(" The Proton Bridge connects electron mass to proton mass:") print() print(" m_p = k_geom × β × (m_e / α)") print() print(" Where k_geom is a PURE geometric constant:") print() print(" k_geom = (4/3)π × (π/3) = 4π²/9") print() print(" - (4/3)π = volume of unit sphere") print(" - π/3 = topological tax (angular deficit at poles)") print() # Pure geometric constant - NO fitted parameters k_geom = 4 * math.pi**2 / 9 print(f" k_geom = 4π²/9 = {k_geom:.6f}") print() # Electron mass (scale-setting input, like choosing meters for length) m_e = 0.51099895 # MeV m_p_empirical = 938.27208 # MeV (PDG 2024) print(" PREDICTION 4: Proton Mass") print() print(f" m_e = {m_e} MeV (scale unit)") print() print(f" m_p = k_geom × β × (m_e / α)") print(f" = {k_geom:.4f} × {beta:.4f} × ({m_e} / {alpha:.6f})") m_p_derived = k_geom * beta * (m_e / alpha) m_p_error = abs(m_p_derived - m_p_empirical) / m_p_empirical * 100 print(f" = {m_p_derived:.2f} MeV") print() print(f" Empirical value: {m_p_empirical:.2f} MeV (PDG 2024)") print(f" Error: {m_p_error:.2f}%") print() print(" NOTE: m_e is a scale-setting input (like choosing meters).") print(" The RATIO m_p/m_e ≈ 1836 is the actual prediction.") print() # ========================================================================= # SUMMARY # ========================================================================= print("=" * 70) print("SUMMARY: Complete Derivation Chain") print("=" * 70) print() print(" INPUT (measured):") print(f" α = 1/{alpha_inv}") print() print(" DERIVED (from Golden Loop):") print(f" β = {beta:.9f}") print() print(" PREDICTIONS:") print() print(f" {'Quantity':<20} {'Derived':>12} {'Empirical':>12} {'Error':>10}") print(" " + "-" * 56) print(f" {'c₁ (surface)':<20} {c1_derived:>12.6f} {c1_empirical:>12.6f} {c1_error:>9.4f}%") print(f" {'c₂ (volume)':<20} {c2_derived:>12.6f} {c2_empirical:>12.6f} {c2_error:>9.4f}%") print(f" {'V₄ (QED)':<20} {v4_derived:>12.6f} {v4_qed:>12.6f} {v4_error:>9.4f}%") print(f" {'m_p (proton)':<20} {m_p_derived:>12.2f} {m_p_empirical:>12.2f} {m_p_error:>9.2f}%") print() print(" CONCLUSION:") print(f" All four predictions match empirical data within 0.5%.") print(f" This is achieved with ZERO free parameters (k_geom = 4π²/9 is pure geometry).") print() print(" THE KEY INSIGHT:") print(f" β = {beta:.3f} is the universal vacuum stiffness that") print(" connects nuclear physics (c₁, c₂) to QED (V₄).") print() print(" TO VERIFY:") print(" 1. Check the algebra above by hand") print(" 2. Run: python -c \"import math; print(math.exp(3.043)/3.043)\"") print(" 3. See Lean4 proofs in projects/Lean4/QFD/Physics/") print() print("=" * 70) return { 'alpha_inv': alpha_inv, 'beta': beta, 'c1_derived': c1_derived, 'c1_error': c1_error, 'c2_derived': c2_derived, 'c2_error': c2_error, 'v4_derived': v4_derived, 'v4_error': v4_error, 'm_p_derived': m_p_derived, 'm_p_error': m_p_error, } if __name__ == "__main__": results = main()