

Thesis
Security Assessment
June 8, 2020

Prepared For:
Antonio Salazar Cardozo | ​Thesis
antonio.salazarcardozo@thesis.co

Matt Luongo | ​Thesis
matt@thesis.co

Piotr Dyraga | ​Thesis
piotr.dyraga@thesis.co

Prepared By:
Jim Miller | ​Trail of Bits
james.miller@trailofbits.com

Johanna Ratliff | ​Trail of Bits
johanna.ratliff@trailofbits.com

Sam Sun | ​Trail of Bits
sam.sun@trailofbits.com

mailto:antonio.salazarcardozo@thesis.co
mailto:matt@thesis.co
mailto:piotr.dyraga@thesis.co
mailto:james.miller@trailofbits.com
mailto:johanna.ratliff@trailofbits.com
mailto:sam.sun@trailofbits.com

Assessment Summary
From May 18 to June 5, 2020, Trail of Bits performed an assessment of the ​keep-common​,
keep-core​, ​keep-ecdsa​, ​sortition-pools​, and ​tbtc​ repositories. This report describes the
work performed on the ​tbtc​ repository. Trail of Bits reported numerous findings, with
various levels of severity. The description of classifications for all of our findings can be
found in ​Appendix A​.

The assessment was scoped to apply manual review to ​tBTC​ and its architecture, targeting
smart contracts written in Solidity. We reported 13 issues in tBTC, and each one has been
logged as an issue in their ​public repository​.

Of the high-severity findings discovered, two findings would allow an attacker to seize
signer bonds, and another finding would allow governance to bypass the delay when
changing settings. In addition to these issues, we report some informational findings, which
present no immediate threat but prompt recommendations to strengthen the system.

Additionally, a severe vulnerability was discovered immediately prior to our engagement,
and we assisted in the characterization and remediation of it.

Thesis must improve their testing and verification. Some of our findings could have been
prevented with more rigorous unit testing. Other findings focused on edge cases and
potentially malicious behavior, such as ​this finding​ concerning fee rebates, and we
therefore recommend that Thesis document malicious behaviors the system should
protect against, including edge cases that have not been accounted for. Once these
behaviors have been identified, ​property testing​ can be used to ensure the system is
protected against these attacks.

Overall, we achieved strong coverage of all the codebases in scope. We recommend Thesis
address all the issues discovered and review their fixes and any other subsequent changes
in another assessment.

Lastly, we reviewed the maturity of the codebase and the likelihood of future issues. For
each control family we rate the maturity from strong to missing, and give a brief
explanation of our reasoning.

https://github.com/keep-network/tbtc/issues?q=is%3Aissue+involves%3Asamczsun+created%3A%3C2020-06-15++
https://github.com/keep-network/tbtc/issues/653
https://github.com/crytic/echidna/

Code Maturity Evaluation
Category Name Description

Access Controls Moderate. ​Some findings were mitigated by introducing additional
access controls. However, insufficient access controls allowed us to
bypass the governance delay.

Arithmetic Further Investigation Required. ​No issues were discovered
relating to arithmetic. Arithmetic was not a primary area of focus of
this report.

Assembly Use Strong.​ There was minimal use of assembly in the codebase, and we
report no related issues.

Centralization Moderate.​ We reported one finding in which a rogue owner could
select their own Keep factory, but we did not find many issues
related to centralization.

Contract
Upgradeability

Not Applicable.​ The proxy pattern is used instead of traditional
upgradeability.

Function
Composition

Moderate.​ The Deposit code was well organized. However, other
design decisions relating to the redemption fee calculations made
the code difficult to understand.

Front-Running Not Considered. ​A previous assessment by ConsenSys addressed
front-running concerns around ECDSA fraud submissions.

Monitoring Further Investigation Required. ​No issues were discovered
relating to monitoring. However, if this is an area of concern, it
should be investigated further.

Specification Moderate.​ The high-level documentation was comprehensive but
slightly out of date. As mentioned above, some findings could have
been mitigated by detailing potential malicious behavior more
thoroughly.

Testing &
Verification

Weak. ​Thesis provided many tests, but since our findings could have
been prevented with more thorough testing, it should be improved.

Project Dashboard
Commit hashes of the reviewed repositories:

● keep-common: 9fbd0b9c5ad2376ee49b3380e038648d87f0b103

● keep-core: 16554512ae545608a5e902160949defb626cc3bd

● keep-ecdsa: f52ec8f65d3aa99529fd48b182069a78b5d473f3

● sortition-pools: c0b2c7d04125176cad614d3b5a458858dfbd25a6

● tbtc: b823795fd5c870364947474d8495b12102812b74

Appendix A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Documentation Related to documentation accuracy

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal

implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

Appendix B. Code Maturity Classifications
Code Maturity Classes

Category Name Description

Access Controls Related to the authentication and authorization of components.

Arithmetic Related to the proper use of mathematical operations and
semantics.

Assembly Use Related to the use of inline assembly.

Centralization Related to the existence of a single point of failure.

Upgradeability Related to contract upgradeability.

Function
Composition

Related to separation of the logic into functions with clear purpose.

Front-Running Related to resilience against front-running.

Key Management Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring Related to use of events and monitoring procedures.

Specification Related to the expected codebase documentation.

Testing &
Verification

Related to the use of testing techniques (unit tests, fuzzing, symbolic
execution, etc.).

Rating Criteria

Rating Description

Strong The component was reviewed and no concerns were found.

Satisfactory The component had only minor issues.

Moderate The component had some issues.

Weak The component led to multiple issues; more issues might be present.

Missing The component was missing.

Not Applicable The component is not applicable.

Not Considered The component was not reviewed.

Further
Investigation
Required

The component requires further investigation.

