
Fantastic Bugs and
How to Squash Them;

or, the Crimes of Solidity

Evan Sultanik
@ESultanik

`whoami`

What should you take away
from this talk?

• Experienced Ethereum developers

✓ Learn from the most common mistakes of your peers

✓ Learn new tooling for improving your SDLC

What should you take away
from this talk?

• Experienced Ethereum developers

✓ Learn from the most common mistakes of your peers

✓ Learn new tooling for improving your SDLC

• Programmers who are new to smart contracts

✓ Learn what not to do

✓ Learn what to do

What should you take away
from this talk?

• Experienced Ethereum developers

✓ Learn from the most common mistakes of your peers

✓ Learn new tooling for improving your SDLC

• Programmers who are new to smart contracts

✓ Learn what not to do

✓ Learn what to do
• People interested in the technology

✓ Learn about the state of the ecosystem

• Everyone else?

What should you take away
from this talk?

Meme-O-Meter

Outline

• Solidity the Language

• Solidity Implementation and Tooling

• On the Horizon

• Bugs!

• What You Can Do About It

Hi, I’m Trippy, your
programming assistant. I
help you not get tripped

up on Solidity.

Outline

• Solidity the Language

• Solidity Implementation and Tooling

• On the Horizon

• Bugs!

• What You Can Do About It

It looks like you are
trying to write a bug-
free Solidity contract…

Programming Language Checklist

Solidity, the Language

Programming Language Checklist
by Colin McMillen, Jason Reed, and Elly Jones.

You appear to be advocating a new:
[] functional [] imperative [X] object-oriented [X] procedural [X] stack-based
[] "multi-paradigm" [] lazy [] eager [X] statically-typed [] dynamically-
typed
[] pure [] impure [] non-hygienic [] visual [] beginner-friendly
[X] non-programmer-friendly [] completely incomprehensible
programming language. Your language will not work. Here is why it will not work.

You appear to believe that:
[] Syntax is what makes programming difficult
[] Garbage collection is free [] Computers have infinite memory
[X] Nobody really needs:
 [] concurrency [] a REPL [X] debugger support [] IDE support [] I/O
 [] to interact with code not written in your language
[] The entire world speaks 7-bit ASCII
[] Scaling up to large software projects will be easy
[] Convincing programmers to adopt a new language will be easy
[] Convincing programmers to adopt a language-specific IDE will be easy
[] Programmers love writing lots of boilerplate
[] Specifying behaviors as "undefined" means that programmers won't rely on them
[X] "Spooky action at a distance" makes programming more fun

Your language will not work.

You appear to believe that:
[] Syntax is what makes programming difficult
[] Garbage collection is free [] Computers have infinite memory
[X] Nobody really needs:
 [] concurrency [] a REPL [X] debugger support [] IDE support [] I/O
 [] to interact with code not written in your language
[] The entire world speaks 7-bit ASCII
[] Scaling up to large software projects will be easy
[] Convincing programmers to adopt a new language will be easy
[] Convincing programmers to adopt a language-specific IDE will be easy
[] Programmers love writing lots of boilerplate
[] Specifying behaviors as "undefined" means that programmers won't rely on them
[X] "Spooky action at a distance" makes programming more fun

Unfortunately, your language (has/lacks):
[] comprehensible syntax [] semicolons [] significant whitespace [] macros
[] implicit type conversion [] explicit casting [X] type inference
[] goto [] exceptions [X] closures [] tail recursion [] coroutines
[] reflection [X] subtyping [] multiple inheritance [X] operator overloading
[] algebraic datatypes [X] recursive types [] polymorphic types
[] covariant array typing [X] monads [] dependent types
[] infix operators [] nested comments [] multi-line strings [X] regexes
[] call-by-value [] call-by-name [] call-by-reference [] call-cc

The following philosophical objections apply:

The following philosophical objections apply:
[] Programmers should not need to understand category theory to write "Hello,
World!"
[] Programmers should not develop RSI from writing "Hello, World!"
[] The most significant program written in your language is its own compiler
[] The most significant program written in your language isn't even its own compiler
[X] No language spec
[X] "The implementation is the spec"
 [] The implementation is closed-source [] covered by patents [] not owned by
you
[X] Your type system is unsound [X] Your language cannot be unambiguously parsed
 [X] a proof of same is attached
 [] invoking this proof crashes the compiler
[] The name of your language makes it impossible to find on Google
[] Interpreted languages will never be as fast as C
[] Compiled languages will never be "extensible"
[] Writing a compiler that understands English is AI-complete
[] Your language relies on an optimization which has never been shown possible
[] There are less than 100 programmers on Earth smart enough to use your language
[] ____________________________ takes exponential time
[] ____________________________ is known to be undecidable

Your implementation has the following flaws:
[] CPUs do not work that way
[] RAM does not work that way

Your implementation has the following flaws:
[] CPUs do not work that way
[] RAM does not work that way
[] VMs do not work that way
[X] Compilers do not work that way
[] Compilers cannot work that way
[] Shift-reduce conflicts in parsing seem to be resolved using rand()
[] You require the compiler to be present at runtime
[] You require the language runtime to be present at compile-time
[X] Your compiler errors are completely inscrutable
[X] Dangerous behavior is only a warning
[] The compiler crashes if you look at it funny
[] The VM crashes if you look at it funny
[X] You don't seem to understand basic optimization techniques
[X] You don't seem to understand basic systems programming
[] You don't seem to understand pointers
[] You don't seem to understand functions

Additionally, your marketing has the following problems:
[] Unsupported claims of increased productivity
[] Unsupported claims of greater "ease of use"
[] Obviously rigged benchmarks
 [] Graphics, simulation, or crypto benchmarks where your code just calls
 handwritten assembly through your FFI
 [] String-processing benchmarks where you just call PCRE

Additionally, your marketing has the following problems:
[] Unsupported claims of increased productivity
[] Unsupported claims of greater "ease of use"
[] Obviously rigged benchmarks
 [] Graphics, simulation, or crypto benchmarks where your code just calls
 handwritten assembly through your FFI
 [] String-processing benchmarks where you just call PCRE
 [] Matrix-math benchmarks where you just call BLAS
[] Noone really believes that your language is faster than:
 [] assembly [] C [] FORTRAN [] Java [] Ruby [] Prolog
[] Rejection of orthodox programming-language theory without justification
[] Rejection of orthodox systems programming without justification
[] Rejection of orthodox algorithmic theory without justification
[] Rejection of basic computer science without justification

Taking the wider ecosystem into account, I would like to note that:
[] Your complex sample code would be one line in: _______________________
[] We already have an unsafe imperative language
[] We already have a safe imperative OO language
[] We already have a safe statically-typed eager functional language
[] You have reinvented Lisp but worse
[X] You have reinvented Javascript but worse
[] You have reinvented Java but worse
[] You have reinvented C++ but worse
[] You have reinvented PHP but worse

 [] assembly [] C [] FORTRAN [] Java [] Ruby [] Prolog
[] Rejection of orthodox programming-language theory without justification
[] Rejection of orthodox systems programming without justification
[] Rejection of orthodox algorithmic theory without justification
[] Rejection of basic computer science without justification

Taking the wider ecosystem into account, I would like to note that:
[] Your complex sample code would be one line in: _______________________
[] We already have an unsafe imperative language
[] We already have a safe imperative OO language
[] We already have a safe statically-typed eager functional language
[] You have reinvented Lisp but worse
[X] You have reinvented Javascript but worse
[] You have reinvented Java but worse
[] You have reinvented C++ but worse
[] You have reinvented PHP but worse
[] You have reinvented PHP better, but that's still no justification
[] You have reinvented Brainfuck but non-ironically

In conclusion, this is what I think of you:
[X] You have some interesting ideas, but this won't fly.
[X] This is a bad language, and you should feel bad for inventing it.
[X] Programming in this language is an adequate punishment for inventing it.

In conclusion, this is what I think of you:
[X] You have some interesting ideas, but this won't fly.
[X] This is a bad language, and you should feel bad for inventing it.
[X] Programming in this language is an adequate punishment for
inventing it.

if(1 | 0 < 1) {
 /* case 1 */
} else {
 /* case 2 */
}

if(1 | 0 < 1) {
 /* case 1 */
} else {
 /* case 2 */
}

C, C++, Javascript, Java, …

if(1 | 0 < 1) {
 /* case 1 */
} else {
 /* case 2 */
}

C, C++, Javascript, Java, …

Solidity
LEEEROYYY JENKINS!

Su
ch
 La

ng
ua
ge
! Much Bugs!

WOW!

if(1 | 0 < 1) {
 /* case 1 */
} else {
 /* case 2 */
}

C, C++, Javascript, Java, …

Solidity
LEEEROYYY JENKINS!

Su
ch
 La

ng
ua
ge
! Much Bugs!

WOW!

Lesson: Don’t assume
Solidity behaves like
most other languages!

for (var i = 0; i < foo.length; ++i) {
 foo[i] = i;
}

What does foo[1337] look like after this?

for (var i = 0; i < foo.length; ++i) {
 foo[i] = i;
}

What does foo[1337] look like after this?

Lesson: Always use
explicit types!

How to Write a Solidity Parser
(1) ☕
(2) Look up the official grammar

How to Write a Solidity Parser
(1) ☕
(2) Look up the official grammar
(3) "
(4) Struggle to get a parser generator to accept it

How to Write a Solidity Parser
(1) ☕
(2) Look up the official grammar
(3) "
(4) Struggle to get a parser generator to accept it
(5) #
(6) Discover that the grammar is not correct

How to Write a Solidity Parser
(1) ☕
(2) Look up the official grammar
(3) "
(4) Struggle to get a parser generator to accept it
(5) #
(6) Discover that the grammar is not correct
(7) $
(8) Discover that existing parsers were #YOLO’d by hand

How to Write a Solidity Parser
(1) ☕
(2) Look up the official grammar
(3) "
(4) Struggle to get a parser generator to accept it
(5) #
(6) Discover that the grammar is not correct
(7) $
(8) Discover that existing parsers were #YOLO’d by hand
(9) %⚰

One Does Not Simply
Implement the Shunting Yard Algorithm

One Does Not Simply
Implement the Shunting Yard Algorithm

1 | 0 < 1

contract C{
 struct myStruct{
 function(uint) my_func;
 }

 function test(){
 myStruct m;

 m.my_func = call_log;
 m.my_func(0);

 m.my_func = call_log2;
 m.my_func(0);
 }

 function call_log(uint a){
 Log(a);
 }

 function call_log2(uint a){
 Log2(a);
 }

 event Log(uint);
 event Log2(uint);
}

contract C{
 struct myStruct{
 function(uint) my_func;
 }

 function test(){
 myStruct m;

 m.my_func = call_log;
 m.my_func(0);

 m.my_func = call_log2;
 m.my_func(0);
 }

 function call_log(uint a){
 Log(a);
 }

 function call_log2(uint a){
 Log2(a);
 }

 event Log(uint);
 event Log2(uint);
}

Solidity Spec. Solidity Compiler

a struct that contains a pointer to a function

contract C{
 struct myStruct{
 function(uint) my_func;
 }

 function test(){
 myStruct m;

 m.my_func = call_log;
 m.my_func(0);

 m.my_func = call_log2;
 m.my_func(0);
 }

 function call_log(uint a){
 Log(a);
 }

 function call_log2(uint a){
 Log2(a);
 }

 event Log(uint);
 event Log2(uint);
}

Solidity Spec. Solidity Compiler

a struct that contains a pointer to a function

Lesson: The sole,
canonical reference for
Solidity is the source

code of its sole
compiler.

Another interesting challenge we found to parse Solidity was that the
language uses the same symbol (comma) as a separator for expression lists
but also as an operator for the expression itself. … This causes a serious
problem because when the parser finds a comma in the input it does not
know if it is an operator for the current expression (matching the Expression
rule) or a separator to the current expression and the beginning of a new one
(matching ExpressionList). This is a potential problem for any parser due to
the ambiguity of matching either rule when encountering a comma.the ambiguity of matching either rule when encountering a comma.

This is a potential problem for any parser due to

…we found out that Solidity’s type system is far
from being safe with respect to any type of error:

in many occasions, contract interfaces are not
consulted at compile-time, and this makes the
execution raise an exception and the user waste
money.

Solidity
Implementation and Tooling

The difference between an
amateur and a professional is: you

write your own compiler.

16 Block Trace

18,538 invocations of EXP

by Martin Holst Swende

Well over half were calculating 160 raised to the power of 1

Martin’s GitHub profile pic:

⏱4m

18538x4

=~25%
20000x16

16 Block Trace

18,538 invocations of EXP

by Martin Holst Swende

Well over half were calculating 160 raised to the power of 1

Martin’s GitHub profile pic:

⏱4m

18538x4

=~25%
20000x16

Lesson: Solidity is bad
at optimization, but

getting better, kinda
(more on this later)

Exponentiation: How does it work?
// We need cleanup for EXP because 0**0 == 1, but 0**0x100 == 0

Using the ** operator with an exponent of type shorter than 256 bits can result in unexpected values.

Exponentiation: How does it work?
// We need cleanup for EXP because 0**0 == 1, but 0**0x100 == 0

Using the ** operator with an exponent of type shorter than 256 bits can result in unexpected values.

Lesson: The compiler
is still immature

Things Are Improving

Things Are Improving
Changing

Things Are Improving
Changing

Adapted from https://xkcd.com/1428/

SOLIDITY DEV

Things Are Improving
Changing

Adapted from https://xkcd.com/1428/

SOLIDITY DEV

Lesson: Expect
breaking changes

during the course of
your project!

Upgradable Contracts

Upgradable Contracts

(()01010101

Upgradable Contracts

(()11111100
01010101 **

Upgradable Contracts

(()11111100
01010101 **

Lesson: If you absolutely have
to use the DELEGATECALL

proxy upgrade pattern, then you
must always make sure the
storage layout of your new

contract matches the old one!

Backward Compatibility?

0.4.24 .sol

Backward Compatibility?

Solidity 0.5.0

0.4.24 .sol

Backward Compatibility?

Solidity 0.5.0

⋮

⋮

⋮
Lesson: Use
solc-select!

Optimizations are Dangerous

• Compiler optimization still in active development

• Independent compiler audit in November of 2018 concluded
optimizations are dangerous

• Numerous high severity bugs related to the optimizer, many
excluded from the changlog

• There are likely latent bugs

Optimizations are Dangerous

• Compiler optimization still in active development

• Independent compiler audit in November of 2018 concluded
optimizations are dangerous

• Numerous high severity bugs related to the optimizer, many
excluded from the changlog

• There are likely latent bugs

Lesson: Don’t turn on
solc optimizations

unless you really, really
know what you are

doing

On the Horizon

They’re Proposing a New
Intermediate Representation, YUL

Block = '{' Statement* '}'
Statement =
 Block |
 FunctionDefinition |
 VariableDeclaration |
 Assignment |
 Expression |
 Switch |
 ForLoop |
 BreakContinue
FunctionDefinition =
 'function' Identifier '(' TypedIdentifierList? ')'
 ('->' TypedIdentifierList)? Block
VariableDeclaration =
 'let' TypedIdentifierList (':=' Expression)?
Assignment =
 IdentifierList ':=' Expression
Expression =
 FunctionCall | Identifier | Literal
If =
 'if' Expression Block
Switch =
 'switch' Expression Case* ('default' Block)?
Case =
 'case' Literal Block

ForLoop =
 'for' Block Expression Block Block
BreakContinue =
 'break' | 'continue'
FunctionCall =
 Identifier '(' (Expression (',' Expression)*)? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
 (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':'
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+

They’re Proposing a New
Intermediate Representation, YUL

Block = '{' Statement* '}'
Statement =
 Block |
 FunctionDefinition |
 VariableDeclaration |
 Assignment |
 Expression |
 Switch |
 ForLoop |
 BreakContinue
FunctionDefinition =
 'function' Identifier '(' TypedIdentifierList? ')'
 ('->' TypedIdentifierList)? Block
VariableDeclaration =
 'let' TypedIdentifierList (':=' Expression)?
Assignment =
 IdentifierList ':=' Expression
Expression =
 FunctionCall | Identifier | Literal
If =
 'if' Expression Block
Switch =
 'switch' Expression Case* ('default' Block)?
Case =
 'case' Literal Block

ForLoop =
 'for' Block Expression Block Block
BreakContinue =
 'break' | 'continue'
FunctionCall =
 Identifier '(' (Expression (',' Expression)*)? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
 (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':'
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+

All of this has happened before … and will happen again.

They’re Proposing a New
Intermediate Representation, YUL

Block = '{' Statement* '}'
Statement =
 Block |
 FunctionDefinition |
 VariableDeclaration |
 Assignment |
 Expression |
 Switch |
 ForLoop |
 BreakContinue
FunctionDefinition =
 'function' Identifier '(' TypedIdentifierList? ')'
 ('->' TypedIdentifierList)? Block
VariableDeclaration =
 'let' TypedIdentifierList (':=' Expression)?
Assignment =
 IdentifierList ':=' Expression
Expression =
 FunctionCall | Identifier | Literal
If =
 'if' Expression Block
Switch =
 'switch' Expression Case* ('default' Block)?
Case =
 'case' Literal Block

ForLoop =
 'for' Block Expression Block Block
BreakContinue =
 'break' | 'continue'
FunctionCall =
 Identifier '(' (Expression (',' Expression)*)? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
 (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':'
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+

The “If” production rule is never used!

All of this has happened before … and will happen again.

They’re Proposing a New
Intermediate Representation, YUL

Block = '{' Statement* '}'
Statement =
 Block |
 FunctionDefinition |
 VariableDeclaration |
 Assignment |
 Expression |
 Switch |
 ForLoop |
 BreakContinue
FunctionDefinition =
 'function' Identifier '(' TypedIdentifierList? ')'
 ('->' TypedIdentifierList)? Block
VariableDeclaration =
 'let' TypedIdentifierList (':=' Expression)?
Assignment =
 IdentifierList ':=' Expression
Expression =
 FunctionCall | Identifier | Literal
If =
 'if' Expression Block
Switch =
 'switch' Expression Case* ('default' Block)?
Case =
 'case' Literal Block

ForLoop =
 'for' Block Expression Block Block
BreakContinue =
 'break' | 'continue'
FunctionCall =
 Identifier '(' (Expression (',' Expression)*)? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
 (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':'
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+

The “If” production rule is never used!

The default switch case isn’t followed by a ‘:’

All of this has happened before … and will happen again.

They’re Proposing a New
Intermediate Representation, YUL

Block = '{' Statement* '}'
Statement =
 Block |
 FunctionDefinition |
 VariableDeclaration |
 Assignment |
 Expression |
 Switch |
 ForLoop |
 BreakContinue
FunctionDefinition =
 'function' Identifier '(' TypedIdentifierList? ')'
 ('->' TypedIdentifierList)? Block
VariableDeclaration =
 'let' TypedIdentifierList (':=' Expression)?
Assignment =
 IdentifierList ':=' Expression
Expression =
 FunctionCall | Identifier | Literal
If =
 'if' Expression Block
Switch =
 'switch' Expression Case* ('default' Block)?
Case =
 'case' Literal Block

ForLoop =
 'for' Block Expression Block Block
BreakContinue =
 'break' | 'continue'
FunctionCall =
 Identifier '(' (Expression (',' Expression)*)? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
 (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':'
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+

The “If” production rule is never used!

The default switch case isn’t followed by a ‘:’

“switch foo” is a legal production in this grammar

All of this has happened before … and will happen again.

They’re Proposing a New
Intermediate Representation, YUL

Block = '{' Statement* '}'
Statement =
 Block |
 FunctionDefinition |
 VariableDeclaration |
 Assignment |
 Expression |
 Switch |
 ForLoop |
 BreakContinue
FunctionDefinition =
 'function' Identifier '(' TypedIdentifierList? ')'
 ('->' TypedIdentifierList)? Block
VariableDeclaration =
 'let' TypedIdentifierList (':=' Expression)?
Assignment =
 IdentifierList ':=' Expression
Expression =
 FunctionCall | Identifier | Literal
If =
 'if' Expression Block
Switch =
 'switch' Expression Case* ('default' Block)?
Case =
 'case' Literal Block

ForLoop =
 'for' Block Expression Block Block
BreakContinue =
 'break' | 'continue'
FunctionCall =
 Identifier '(' (Expression (',' Expression)*)? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
 (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':'
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+

The “If” production rule is never used!

The default switch case isn’t followed by a ‘:’

“switch foo” is a legal production in this grammar

StringLiteral can’t be represented without casting

All of this has happened before … and will happen again.

They’re Proposing a New
Intermediate Representation, YUL

Block = '{' Statement* '}'
Statement =
 Block |
 FunctionDefinition |
 VariableDeclaration |
 Assignment |
 Expression |
 Switch |
 ForLoop |
 BreakContinue
FunctionDefinition =
 'function' Identifier '(' TypedIdentifierList? ')'
 ('->' TypedIdentifierList)? Block
VariableDeclaration =
 'let' TypedIdentifierList (':=' Expression)?
Assignment =
 IdentifierList ':=' Expression
Expression =
 FunctionCall | Identifier | Literal
If =
 'if' Expression Block
Switch =
 'switch' Expression Case* ('default' Block)?
Case =
 'case' Literal Block

ForLoop =
 'for' Block Expression Block Block
BreakContinue =
 'break' | 'continue'
FunctionCall =
 Identifier '(' (Expression (',' Expression)*)? ')'
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
IdentifierList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIdentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
 (NumberLiteral | StringLiteral | HexLiteral | TrueLiteral | FalseLiteral) ':'
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
TrueLiteral = 'true'
FalseLiteral = 'false'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+

The “If” production rule is never used!

The default switch case isn’t followed by a ‘:’

“switch foo” is a legal production in this grammar

StringLiteral can’t be represented without casting

All of this has happened before … and will happen again.

SlithIREV
M

::S
SA

Solidity Alternatives

• Even more immature

• Lack of security tooling

• Different semantics!

Bugs!

Compiler Warnings

Compiler Warnings

Warning: “throw” is
deprecated in favour

of “revert()”,
“require()” and

“assert()”

Compiler Warnings

assert;

+

Compiler Warnings

Reentrancy

Reentrancy

,

Reentrancy

, Deploy Attack Contract

Reentrancy

,
pwn()

Reentrancy

,
pwn()

Reentrancy

,
pwn()

Reentrancy

,
pwn()

Reentrancy

,
pwn()

Reentrancy

,
pwn()

Reentrancy

,
pwn()

Lesson: Use the
“checks, effects,

interactions” pattern!

))

Malicious External Calls

, -

))

Malicious External Calls

, -

))

Malicious External Calls

, -

))

Malicious External Calls

, -
Lesson: Don’t trust
external contracts!

Zero Initialization

Zero Initialization

Zero Initialization

Lesson: Unlike in most other
languages, uninitialized keys

will result in uninitialized
memory, which is zeroed.

Array Length Manipulation

Array Length Manipulation

Lesson: Never manually
manipulate the length

of an array!

Transaction “Frontrunning”

()01010101

Transaction “Frontrunning”

()01010101.

Transaction “Frontrunning”

()01010101.

Transaction “Frontrunning”

()01010101 /.0 1

Transaction “Frontrunning”

()01010101 /. .

Transaction “Frontrunning”

()01010101 /. .

Transaction “Frontrunning”

()01010101 /* . .
2

Transaction “Frontrunning”

()01010101 /* . .
Lesson: Transactions
are public, and aren’t

guaranteed to be mined
in order

2

Randomness
• The blockchain does not provide any

cryptographically secure source of randomness

‣ Block hashes are random, but miners can manipulate them

‣ Miners can also influence timestamps

Randomness
• The blockchain does not provide any

cryptographically secure source of randomness

‣ Block hashes are random, but miners can manipulate them

‣ Miners can also influence timestamps

• Everything in a contract is publicly visible

‣ Random numbers can’t be generated until after all lottery
entries have been recorded

Randomness
• The blockchain does not provide any

cryptographically secure source of randomness

‣ Block hashes are random, but miners can manipulate them

‣ Miners can also influence timestamps

• Everything in a contract is publicly visible

‣ Random numbers can’t be generated until after all lottery
entries have been recorded

• Computers will always be faster than the blockchain

‣ Any number a contract could generate can be pre-
calculated off-chain faster

Don’t try to be clever
with number theory

Don’t try to be clever
with number theory

winner = entries[blockHash % entries.length];

Everybody with me!

You can’t do random
on a blockchain

Everybody with me!

You can’t do random
on a blockchain

Lesson: If you really
need randomness, use a

trusted off-chain oracle.

Pre-Signed Transfers

Pre-Signed Transfers

Lesson: Always check the
return value of ecrecover!

Better yet, avoid it!

What Can You Do
About It?

What can be done? Buy our free,
open source products.https://github.com/trailofbits/…

Manticore Symbolic Execution

Slither Static Analysis

Echidna Property Based Fuzzer

Rattle EVM to SSA Lifter

Etheno Test Framework Integration

Ethersplay Visual EVM Disassembler

pyevmasm Bytecode Analysis

evm-opcodes
VM Reference

not-so-smart-contracts
common vulnerability database
awesome-ethereum-security

security best practices

blockchain-security-contacts
it’s surprisingly hard to disclose bugs

(Not So) Smart Contracts
Educational Tool
Learn about EVM and Solidity Vulnerabilities

Working Examples of Contracts
Real Vulnerabilities Found in the Wild

Reference Material
Useful when Auditing Code

https://github.com/crytic/not-so-smart-contracts

• What? Comprehensive list of security
contacts for blockchain applications

• Why? Projects worth $10MM+ should
have a way to engage with security
researchers

• Features
‣ Vuln disclosure program best

practices
‣ Deployed addresses template for

dapps
‣ Existing contact info for over 100

projects (Blockchains, dapps, ERC20
and 721 tokens, Exchanges, Wallet
software)

Community Information
• What? Curated list of community-

maintained and open-source references

• Why? Everything in one place: no
more searching through stack
overflow, github, and reddit

• Features
‣ Resources for secure development,

CTFs & wargames, and even specific
podcast episodes

‣ Identifies security tools for
visualization, linting, bug finding,
verification, and reversing

‣ Pointers to related communities

Awesome Ethereum Security Blockchain Security Contacts

https://github.com/crytic/awesome-ethereum-security and /blockchain-security-contacts

• Inputs: Solidity code

• Outputs:

‣ Detected errors (extensive list of
vulnerability detectors included)

‣ Warnings of poor coding practices

‣ Inheritance graph and contract
summary

Slither
Smart Contract Static Analysis

• Solidity and Vyper vulnerability
detection

• Low false positives

• Easily integrates into CI pipeline

• Very fast (milliseconds)

• Supports advanced value- and
taint-tracking

• Python-based detector API

https://github.com/crytic/slither
Slither is open source!

https://github.com/crytic/slither

Slither Installation and Usage
$ pip3 install slither-analyzer

then

$ slither contract.sol

or

$ truffle compile; slither .

That’s literally it!

Slither Installation and Usage
$ pip3 install slither-analyzer

then

$ slither contract.sol

or

$ truffle compile; slither .

That’s literally it!

Lesson: Slither is super easy
and quick! No excuse not to

integrate it in your CI pipeline.

Problem: Test for New Bugs

contract Simple {
 function f(uint a){
 // .. lot of paths and conditions

 if (a == 65) {
 // leads to a bug here
 }
 }
}

Problem: Test for New Bugs

contract Simple {
 function f(uint a){
 // .. lot of paths and conditions

 if (a == 65) {
 // leads to a bug here
 }
 }
}

It looks like you want to
detect classes of bugs that
have never been seen before!

• Inputs: Solidity code and tests

• Outputs:

‣ List of invariants Echidna was
able to violate

‣ Minimal call sequence to trigger
discovered violations

Echidna
Smart Contract Property Tester

• Generates and execute many contract inputs

• Generate intelligent, grammar-based inputs

• Seamlessly integrate into developer workflows

• Run thousands of generated inputs per
second

• Automatically generate minimal testcases

• Highly extensible via Haskell API

https://github.com/crytic/echidna
Echidna is open source!

https://github.com/crytic/slither

Echidna Example

Echidna Example
Lesson: Echidna is not as fast
as Slither, but it is still quick
enough to be useful in your CI
pipeline. Unlike Slither, it is
capable of discovering wholly

new classes of bugs.

• Inputs: Solidity code (optional) or raw
EVM bytecode

• Outputs:

‣ List of detected flaws

‣ Verified properties

‣ Execution traces of discovered paths

Manticore
Smart Contract Verifier

• Uses symbolic execution of EVM

• Deeply explores possible contract states across
multiple transactions and contracts

• Discover functions directly from bytecode

• Detect contract flaws like int overflows,
uninitialized memory/storage usage, and more

• Verify customized program assertions

• Highly scriptable and extensible via Python
API

https://github.com/trailofbits/manticore
Manticore is open source!

https://github.com/crytic/slither

contract Simple {
 function f(uint a){
 // .. lot of paths and conditions

 if (a == 65) {
 revert();
 }
 }
}

Manticore Example

contract Simple {
 function f(uint a){
 // .. lot of paths and conditions

 if (a == 65) {
 revert();
 }
 }
}

$ manticore simple.sol
2018-02-28 17:06:21,650: [25981] m.main:INFO: Beginning analysis
2018-02-28 17:06:21,803: [25981] m.ethereum:INFO: Starting symbolic transaction: 1
2018-02-28 17:06:22,098: [25981] m.ethereum:INFO: Generated testcase No. 0 - REVERT
2018-02-28 17:06:23,185: [25981] m.ethereum:INFO: Generated testcase No. 1 - REVERT
2018-02-28 17:06:24,206: [25981] m.ethereum:INFO: Finished symbolic transaction: 1 | Code Coverage: 100% |
Terminated States: 3 | Alive States: 1
2018-02-28 17:06:24,213: [32058] m.ethereum:INFO: Generated testcase No. 2 - STOP
2018-02-28 17:06:25,269: [25981] m.ethereum:INFO: Results in /examples/mcore_zua0Yl

Manticore Example

contract Simple {
 function f(uint a){
 // .. lot of paths and conditions

 if (a == 65) {
 revert();
 }
 }
}

$ manticore simple.sol
2018-02-28 17:06:21,650: [25981] m.main:INFO: Beginning analysis
2018-02-28 17:06:21,803: [25981] m.ethereum:INFO: Starting symbolic transaction: 1
2018-02-28 17:06:22,098: [25981] m.ethereum:INFO: Generated testcase No. 0 - REVERT
2018-02-28 17:06:23,185: [25981] m.ethereum:INFO: Generated testcase No. 1 - REVERT
2018-02-28 17:06:24,206: [25981] m.ethereum:INFO: Finished symbolic transaction: 1 | Code Coverage: 100% |
Terminated States: 3 | Alive States: 1
2018-02-28 17:06:24,213: [32058] m.ethereum:INFO: Generated testcase No. 2 - STOP
2018-02-28 17:06:25,269: [25981] m.ethereum:INFO: Results in /examples/mcore_zua0Yl

Manticore Example

Manticore can verify that
your code satisfies its

invariants, but it can take a
long time to run!

Conclusions
• Solidity isn’t a great language, but we’re stuck with it (for now)
• Don’t assume Solidity behaves like a “normal” language
• Don’t trust the Solidity documentation; the sole compiler implementation is canon
• Don’t enable Solidity compiler optimizations
• Avoid the “DELEGATECALL” upgrade pattern
• Don’t trust calls to external contracts
• Remember that everything on the blockchain is public
• Don’t assume transactions will be mined in order (or at all!)
• Read “(Not So) Smart Contracts”
• Add Slither and Echidna into your CI pipeline
• Use Manticore to verify the correctness of your contracts

Thanks!
@ESultanik

Acknowledgements

Et pl. al.

Ryan Stortz

Jay Little

Josselin Feist

Stefan Edwards

JP

@withzombies

@computerality

@montyly

@lojikil

@japesinator

Thanks!
@ESultanik

