Fantastic Bugs and

How to Squash Them:;

or, the Crimes of Solidity

T T Evan Sultanik
§ N A L @ESultanik
OF To

875

AT LEAST A 2-FACTOR

COFFEE DISTRIBUTION AUTHENTICATION

DO You REALIZE \
HOW UNSECURE YOUR
SYSTEM 1S2

ANYONE COULD
CLAM TO BE ME AND
GET MY COFFEE!

PROTOCOL WIMH DATA
ENCRYPTION AND
BIOMETRIC VERIFICATION.
TS BASIC (DENTITY

T" Drexel

UNIVERSITY

w
M
X

C

5

pou.com T
because pets can't drive my account{3d

T (&3
gift center g‘

K

dogs cats fish birds

ferrets reptiles | small pets

find [

Celebrate our Anniversary -

1 q - QO .
today’s features . sWith lO,‘f) off. = .
» Evergthing] -« 4 a
. L=t A

Portrait of a Poodle
To capture Fido at his
best, go with a pro.

FROM INTERNET HRCHI'.'E"LUFI_'(

A Very Kitty Christmas ;p
Your cat can get into the et o[
| holiday spirit, too. Trg t]us for dogs Or this for cats the D‘lg
Nutro MAX Mini Pets.com Cat Gift
Basket associates

g program

reg. price: $29.99
Saie price: $18.99

pets.commitment

|
; Chunk
— reg. price: $26.49 g
I cale price: $19.99
Make your own

; Pets.commitment

PAVIYIE ot rounoamon

b law pets vet

THAT'S How YOU
KNOW (TS ME,

PoC|/GTFO

Volume 1L

What should you take away
from this talk?

What should you take away
from this talk?

® Experienced Ethereum developers
v Learn from the most common mistakes of your peers

v Learn new tooling for improving your SDLC

What should you take away
from this talk?

® Experienced Ethereum developers
v Learn from the most common mistakes of your peers
v Learn new tooling for improving your SDLC
® Programmers who are new to smart contracts
v Learn what not to do
v Learn what to do

What should you take away
from this talk?

® Experienced Ethereum developers
v Learn from the most common mistakes of your peers
v Learn new tooling for improving your SDLC
® Programmers who are new to smart contracts
v Learn what not to do
v Learn what to do
® People interested in the technology

v Learn about the state of the ecosystem

® Everyone else?
Meme-O-Metet\

Cem' nest - pas une meme

Outline

e Solidity the Language

e Solidity Implementation and Tooling
e On the Horizon

e Bugs!

e \What You Can Do About It

-

_

Hi, I'm Trippy, your

help you not get tripped
up on Solidity.

~

programming assistant. 1

/

\4
S B

Y

Outline

e Solidity the Language

- . . 4
e Solidity Implementation and Tooling

It looks like you are
trying to write a bug-

e On the Horizon free Solidity contract...

_

e Bugs! AN

Y

e \What You Can Do About It

Solidity, the Language

Programming Language Checklist
by Colin McMillen, Jason Reed, and Elly Jones.

You appear to be advocating a new:

[] functional [] imperative [X] object-oriented [X] procedural [X] stack-based
[1] "multi-paradigm” [] lazy [] eager [X] statically-typed [] dynamically-
typed

] pure] impure] non-hygienic] visual] beginner-friendly

Y EUE “léﬁﬁwé@ée WiTT Kok, work.

You appear to believe that:
[] Syntax 1s what makes programming difficult

[] Garbage collection 1is free [] Computers have infinite memory
[X] Nobody really needs:
[] concurrency [] a REPL [X] debugger support [] IDE support [] I/O

[] to interact with code not written 1n your language
] The entire world speaks 7-bit ASCII
] Scaling up to large software projects will be easy
] Convincing programmers to adopt a new language will be easy
] Convincing programmers to adopt a language-specific IDE will be easy
]
]
|

Programmers love writing lots of boilerplate
Specifying behaviors as "undefined" means that programmers won't rely on them
"Spookyv action at a distance" makes programming more fun

You appear to believe that:

[]

[]
[X]

|
|
]
|
|
]
]

X

Syntax 1s what makes programming difficult

Garbage collection is free [] Computers have infinite memory
Nobody really needs:
[] concurrency [] a REPL [X] debugger support [] IDE support [] I/O

[] to i1nteract with code not written in your language

The entire world speaks 7-bit ASCII

Scaling up to large software projects will be easy

Convincing programmers to adopt a new language will be easy

Convincing programmers to adopt a language-specific IDE will be easy
Programmers love writing lots of boilerplate

Specifying behaviors as "undefined" means that programmers won't rely on them
"Spooky action at a distance" makes programming more fun

Unfortunately, your language (has/lacks):

-——mse| e|ee| | e|ms |- —
e e e eed) e e

3
>
)

comprehensible syntax [] semicolons [] significant whitespace [] macros
implicit type conversion [] explicit casting [X] type inference

goto [] exceptions [X] closures [] tail recursion [] coroutines
reflection [X] subtyping [] multiple inheritance [X] operator overloading
algebraic datatypes [X] recursive types [] polymorphic types

covariant array typing [X] monads [] dependent types

infix operators [] nested comments [] multi-line strings [X] regexes
call-by-value [] call-by-name [] call-by-reference [] call-cc

'Ff\-l 1/\1’.1-: WN N Y\L\':-If\ﬁf\v\kﬂ.ﬁﬁ-l f\k-.lf\ﬁJ-':f\Y\C" ﬁY\Y\-I T O

The following philosophical objections apply:
[] Programmers should not need to understand category theory to write "Hello,
World!"
[] Programmers should not develop RSI from writing "Hello, World!"
[] The most significant program written 1n your language 1s 1ts own compller
[] The most significant program written i1n your language 1sn't even 1ts own compiler
[X] No language spec
[X] "The implementation i1s the spec”
[] The implementation 1s closed-source [] covered by patents [] not owned by
you
[X] Your type system 1s unsound [X] Your language cannot be unambiguously parsed
[X] a proof of same 1s attached
[] invoking this proof crashes the compiler
The name of your language makes 1t impossible to find on Google
Interpreted languages will never be as fast as C
Compiled languages will never be "extensible"
Writing a compiler that understands English 1s AlI-complete
Your language relies on an optimization which has never been shown possible
There are less than 100 programmers on Earth smart enough to use your language
takes exponential time
1s known to be undecidable

- re ' ’T@™ ™ ™M M
e e))))) b

Your implementation has the following flaws:
[] CPUs do not work that way

Your 1mplementation has the following flaws:

[] CPUs do not work that way

RAM does not work that way

VMs do not work that way

Compilers do not work that way

Compilers cannot work that way

Shift-reduce conflicts i1n parsing seem to be resolved using rand()
You require the compiler to be present at runtime

You require the language runtime to be present at compile-time
Your compller errors are completely inscrutable

Dangerous behavior 1s only a warning

The compiler crashes 1f you look at it funny

The VM crashes 1f you look at it funny

You don't seem to understand basic optimization techniqgques

You don't seem to understand basic systems programming

You don't seem to understand pointers

You don't seem to understand functions

|
el

e e ed eed e e e

e

T~ - - ~--- ~~ "~~~ "~~~ M ™M ™
el

XX

Ll

HH
e

Additionally, your marketing has the following problems:
[] Unsupported claims of increased productivity
[] Unsupported claims of greater "ease of use”
[] Obviously rigged benchmarks
[] Graphics, simulation, or crypto benchmarks where your code just calls
handwritten assembly through your FFI

Additionally, your marketing has the following problems:

] Unsupported claims of increased productivity

] Unsupported claims of greater "ease of use”

] Obviously rigged benchmarks

] Graphics, simulation, or crypto benchmarks where your code just calls
handwritten assembly through your FFI

[
[
[

e e e

[

|
|

] String-processing benchmarks where you just call PCR]

L]

] Matrix-math benchmarks where you just call BLAS
Noone really believes that your language 1s faster than:
[] assembly [] C [] FORTRAN [] Java [] Ruby [] Prolog

Rejection
Rejection
Rejection
Rejection

of orthodox programming-language theory without justification
of orthodox systems programming without justification

of orthodox algorithmic theory without justification

of basic computer science without justification

Taking the wider ecosystem into account, I would like to note that:

[
[
[
[
[
[X
[
[

]

]
]
]
]
]
]
]

Your complex sample code would be one line 1in:

We already have an unsafe imperative language
We already have a safe imperative OO language
We already have a safe statically-typed eager functional language

You
You
You
You

AV S |

have
have
have
have

hAasre

reinvented Lisp but worse
reinvented Javascript but worse
reinvented Java but worse
reinvented C++ but worse

A1 nNnxrand+Fad DLLID Khivd: vwvrAaAvCo A

~— " ™ ™

e)) l—)

[] assembly

Rejection
Rejection
Rejection
Rejection

of
of
of
of

Taking the wider

——mTee-.rYeYe|eM e T ™m- "= ™ ™

In

[X
[X
[X

e)))))))) b)

Your comp

lex

[1] C [] FORTRAN [] Java [] Ruby [] Prolog
orthodox programming-language theory without justification
orthodox systems programming without justification
orthodox algorithmic theory without justification
basic computer science without justification

ecosystem i1nto account, I would like to note that:
sample code would be one line 1in:

We already have an unsafe imperative language

We already have a safe imperative 00 language

We already have a safe statically-typed eager functional language
reinvented Lisp but worse

reinvented Javascript but worse

reinvented Java but worse

reinvented C++ but worse

reinvented PHP but worse

reinvented PHP better, but that's still no justification
reinvented Brainfuck but non-ironically

You have
You have
You have
You have
You have
You have
You have

conclusion, this 1s what I think of you:

You have some interesting ideas, but this won't fly.

This 1s a bad language, and you should feel bad for inventing 1it.
Programming 1n this language 1s an adequate punishment for inventing 1it.

In conclusion, this 1s what I think of you:

[X] You have some interesting ideas, but this won't fly.

[X] This 1s a bad language, and you should feel bad for inventing 1it.
[X] Programming 1n this language 1s an adequate punishment for
inventing 1it.

if(1 | 0 < 1) {
/* case 1 */
} else A
/* case 2 x/

}

if(l | 0 < 1) A

C, C++, Javascript, Java, ...

} else {
/* case 2 */

if(1 | 0 < 1) A
C, C++, Javascript, Java, ...

} else A

& 4« LEEEROYYY JENKINS!
& Solidity %

fa°°

F wow!

if(1 | 0 < 1) A
C, C++, Javascript, Java, ...

} e l S e { /Lesson: Don't assume\
A4, VEEEROV
o guages!
S Sohdlty y
c, .,

(90

F wow!

$

for (var i = 0; 1 < foo.length; ++i) {
foolil

1;
+
What does foo[1337] look like atter this?

for i < foo.length; ++i) {

foolil] = 1i;

4 N

} Lesson: Always use
explicit types!

What does foo[1337] look like

How to Write a Solidity Parser

1) =
y You too, can be Panity Techrologies/

(2) Look up the official grammar

Financial Programming

in Solidity

How to Write a Solidity Parser

ok up the official grammar

)

) Lo
3) Lo

)

rl

€

AN 7 ON 77N 7N N N N /N

o

Qo

Sy Ot W=
— ~— — — ~— ~— ~— —

\‘l

3

How to Write a Solidity Parser

O

‘n

Look up the official grammar
4L

Struggle to get a parser generator to accept it

A 4

Discover that the grammar is not correct

o @

iscover that existing parsers were #YOLO’d by hand

N N 77N SN N N N N /N

o

Qo

O =J O Ot =~
— — — — — — — ~— —

O

How to Write a Solidity Parser

O

‘-

-

4!

&

Look up the official grammar

Struggle to get a parser generator to accept it
v

Discover that the grammar is not correct

o @

iscover that existing parsers were #YOLO’d by hand
x\//‘/: %

One Does Not Simply
Implement the Shunting Yard Algorithm

SN NSRS NN

PN
NYTIIYY Ny

NN R

L =

o

)

imply
ing Yard Algor

One Does Not S

Implement the Shunt

1thm

contract C{
struct myStruct{
function(uint) my_func;

function test (DA
myStruct m;

m.my_func = call_log;
m.my_func(0) ;

m.my_func = call_log2;

m.my_func(0) ;

function call_log(uint a){
Log(a) ;

function call_log2(uint a){
Log2(a) ;

event Log(uint) ;
event Log2(uint) ;

a struct that contains a pointer to a function

ORI = |
iﬁstruct myStruct{ =
» function(uint) my_func;%u
& J
L;_%”‘:",.;ww P - zg_’h '
function test(){
myStruct m;
e m.my_func = call_log; .5 -
Solidity Spec. m.my_func(0) ; Solidity ‘Compiler

m.my_func = call_log2;
m.my_func(0) ;

function call_log(uint a){
Log(a) ;
+

function call_log2(uint a){
Log2(a) ;
by

event Log(uint) ;
event Log2(uint);

a struct that contains a pointer to a function

-
- = e e ~
e = = E P~

CON b X-Ssapionmmuni - S o o }

wvstrugt;ﬁySfruct{

7'

v

|

{
Ly
[

function(uint) my_func; §

P i

|
)
(- e e = e s —

i -
. o _ == e
B ot il e R o —xo—

===

function test(){
myStruct m;

N
Lesson: The sole,

canonical reference for
ey T Solidity is the source
code of its sole

m.my_func = call_log;

Solidity Spec. m.my_func (0) ;

}

function call_log(uint a){ .l

Log(a); COmpl er.
} - Y /
function call_log2(uint a){ / \

Log2(a) ;

}

event Log(uint) ;
event Log2(uint);

Solidity Parsing Using SmaCC:
Challenges and Irregularities

Henrique Rocha Stephane Ducasse
Marcus Denker

INRIA Lille - Nord Europe

{henrique.rocha, stephane.ducasse,
marcus.denker }Q@inria.fr

Abstract

Solidity 1s a language used to implement smart contracts on
a blockchain platform. Since its initial conception in 2014,
Solidity has evolved into one of the major languages for the
Ethereum platform as well as other blockchain technologies.
Due to its popularity, there are many tools specifically de-
signed to handle smart contracts written in Solidity. How-
ever, there is a lack of tools for Pharo to handle Solidity
contracts. Therefore, we implemented a parser using SmaCC
to serve as a base for further developing Solidity support in
Pharo. In this paper we describe the parser creation, the ir-
regularities we found in the Solidity grammar specification,
and common practices on how to adapt the grammar to an
LR type parser. Our experiences with parsing the Solidity
language using SmaCC may help other developers trying to
convert similar grammars.

Keywords Solidity, Parser, SmaCC, Blockchain, Ethereum.

1. Introduction

The Blockchain technology attracted a lot attention re-
cently [LCO™'16]. Blockchain is a distributed database,
managed by a peer-to-peer network that stores a list of
blocks or records. Ethereum [Eth14], and BitCoin [Nak09]
are examples of blockchain technologies. Blockchains can
be used for many applications such as cryptocurrency, digital
wallets, adhoc networks, and remote transactions [LCO™ 16,
HL16, LMHI16, Dzil5, Ethl4, Nak(09]. One notable ap-
plication of blockchain is the execution of smart contracts
[LCOT16].

[Copyright notice will appear here once *preprint’ option is removed.]

Jason Lecerf

CEA-List
jason.clement.lecerf@gmail.com

Smart contracts are what embedded procedures are for
databases: programs executed in the blockchain to man-
age and transfer digital assets. When used in platforms
like Ethereum, the contract language is Turing-comple-
te [BDLFT16]. Therefore, smart contracts can be used in
many different scenarios [LCO™ 16]. For example, there are
smart contracts employed to simple storage [Eth17], and
outsourced computation [LTKS15].

Solidity [Eth17] is a programming language loosely
based on JavaScript, and it is used to specify smart contracts
on blockchain platforms. Solidity was originally designed
to be the primary smart contract language for the Ethereum
platform. Even though other contract languages have been
created for Ethereum [DAKM15], Solidity is still one of the
major ones. Moreover, Solidity can also be used in other
blockchain platforms such as Monax! and Hyperledger?.

Probably because of its popularity, there are many tools
to help integrate smart contracts written in Solidity with
other languages and technologies [Eth17]. For example, we
have Solidity compilers coded in C/C++ and Nodels, third-
party parsers and grammar specifications (JavaScript and
ANTLR), plugins for IDEs and editors (IntelliJ, Visual Stu-
dio, Vim, Atom, and etc.). Such tool integration support de-
velopers of smart contracts. However, as far as we know,
there is a lack of tools for Pharo Smalltalk to handle Solid-
ity smart contracts. Moreover, most academic work towards
smart contracts focuses on security [LCO™16, BDLF' 16,
DAK™15] and not in tool support.

In this paper, we plan to partially tackle this lack of tools
problem by building a Solidity parser that runs on Pharo
Smalltalk. We claim that with a parser and its generated AST
(Abstract Syntax Tree), we will be able to develop strong
tool support for Solidity contracts. For instance, it would be
much easier to create code inspection tools on top of a func-
tional parser than to rely on the purely textual content of
the contract. To accomplish these goals, we used SmaCC

Uhttps: //monax.io/, verified 2017-06-19.
Zhttps://www.hyperledger.org/, verified 2017-06-19.

2017/8/18

Solidity Parsing Using SmaCC:
Challenges and Irregularities

Henrique Rocha Stephane Ducasse Jason Lecerf
Marcus Denker CEA-List
INRIA Lille - Nord Europe jason.clement.lecerf@gmail.com

{henrique.rocha, stephane.ducasse,
] ' N A . P

Another interesting challenge we found to parse Solidity was that the
language uses the same symbol (comma) as a separator for expression lists
but also as an operator for the expression itself. ... This causes a serious
problem because when the parser finds a comma in the input it does not
know if it is an operator for the current expression (matching the Expression
rule) or a separator to the current expression and the beginning of a new one

(matching ExpressionList). This is a potential problem for any parser due to

the ambiguity of matching either rule when encountering a comma.

mn ntracts problem by
[LCO™16). Smalltalk. We claim that with a parser and its generated AST
(Abstract Syntax Tree), we will be able to develop strong
tool support for Solidity contracts. For instance, it would be
much easier to create code inspection tools on top of a func-
tional parser than to rely on the purely textual content of
the contract. To accomplish these goals, we used SmaCC

Uhttps: //monax.io/, verified 2017-06-19.
Zhttps://www.hyperledger.org/, verified 2017-06-19.

Universita degli Studi di Padova

DIPARTIMENTO DI MATEMATICA “TULLIO
LEVI-CIVITA”

CORSO DI LAUREA MAGISTRALE IN INFORMATICA

How Solid is Solidity?
An In-dept Study of Solidity’s Type Safety

Master thesis

Supervisor
Prof. Silvia Crafa

Author
Matteo D1 Pirro

SEPTEMBER 2018

Universita degli Studi di Padova

DIPARTIMENTO DI MATEMATICA “TULLIO
LEVI-CIVITA”

...we found out that Solidity’s type system is far

ALY | (7)) 0
QO LA ’ 3 S

/('(«/) \—L\\\ Q

Vet %

In many occasions, contract interfaces are not

from being safe with respect to any type of error:

consulted at compile-time, and this makes the
execution ralse an exception and the user waste

Imoney.

gy " ———

Solidity

Implementation and Tooling

The difference between an

amateur and a professional is: you

write your own compiler.

Ryan Stortz
@withzombies

There are contracts on the blockchain that
calculate 1 with exponentiation. This actually
costs people money...
JIVIF TOXLOU, /0
1>,
<SSA:BasicBlock ofs:0x24c insns:|
%14 = SLOAD(#0x3),
%15 = EXP(#0x100, #0x0),

%16 = DIV(%14, %15),
%1/ = EXP(#0x2, #0OxAQ),
%18 = SUB(%17, #0x1),

10:39 PM - 6 Mar 2018

16 Block Trace~

by Martin Holst Swende

18,538 invocations of EXP

| —— ————

18538x4
20000x16

=~25%

Well over half were calculating 160 raised to the power of 1

Martin’s GitHub profile pic:

16 Block Trace~

by Martin Holst Swende

a4 I

18,538 invocations of EXP Lesson: Solidity is bad
at optimization, but
getting better, kinda

(more on this later)
Well over half were calculating 160 raised t. y y

S B

Y

Martin’s GitHub profile pic:

Exponentiation: How does it work?

// We need cleanup for EXP because 0xx0 == 1, but 0x*x0x100 == 0

4 mmmm libsolidity/codegen/ExpressionCompiler.cpp

View v
3%3 @@ -2069,7 +2069,9 @@ bool ExpressionCompiler::cleanupNeededForOp(Type::Category _type, Token::Value _
{ {
if (Token::isCompareOp(_op) || Token::isShiftOp(_op)) if (Token::isCompareOp(_op) || Token::isShiftOp(_op))
return true; return true;
- else if (_type == Type::Category::Integer && (_op == Token::Div || _op + else if (_type == Type::Category::Integer && (_op == Token::Div || _op
== Token: :Mod)) == Token::Mod || _op == Token::Exp))
it // We need cleanup for EXP because 0xx@ == 1, but 0%x0x100 == 0
i // It would suffice to clean the exponent, though.
return true; return true;
else else
return false; return false;
=R

Using the ** operator with an exponent of type shorter than 256 bits can result in unexpected values.

Exponentiation: How does it work?

// We need cleanup for EXP because 0xx0 == 1, but 0x*x0x100 == 0

4 mmmm libsolidity/codegen/ExpressionCompiler.cpp View v
3%3 @@ -2069,7 +2069,9 @@ bool ExpressionCompiler::cleanupNeededForOp(Type::Category _type, Token::Value _
{ {
if (Token::isCompareOp(_op) || Token::isShiftOp(_op)) if (Token::isCompareQ" ™
return true; return true;
- else if (_type == Type::Category::Integer && (_op == Token::Div || _op - else if (_type == Ty . o
== Token: :Mod)) == Token::Mod || _op == Toke Lesson ° The Compl Ier.
+ // We need c . . . 0
return true; return true;
else else \\ \v/ <//
return false; return false;
52 / R
e \O
Using the *x* operator with an exponent of type shorter than 256 bits can result in un alues.

Things Are Improvmg

Nick Oprisan @NicuOprisan - Nov 30

#Solidity needs to be more stable if we want to grow the dev community. As a
dev | feel | can’t keep-up with the releases. Add this to the growing rate of
changes in the #JS community and you’ve got yourself a confused dev.

f’..

Chris @ethchris

Have you updated to #Solidity 0.5.0 already? We are about to release 0.5.1
in the next days! Yes, | know, it's crazy, it has not even been three weeks!

Show this thread
Q 4 0 4 Q 10 &

Chris
@ethchris

Replying to @NicuOprisan

The breaking release before 0.5.0 was over
two years ago. | think Solidity needs to get
more flexible. We are planning breaking
releases roughly every 6 months now. And |
think it's fine, one reason being that you
cannot change deployed code anyway.

4:12 AM - 30 Nov 2018

Things Are 3

Nick Oprisan @NicuOprisan - Nov 30 v
#Solidity needs to be more stable if we want to grow the dev community. As a
dev | feel | can’t keep-up with the releases. Add this to the growing rate of
changes in the #JS community and you’ve got yourself a confused dev.

Sy~
8
' -

Chris @ethchris
Have you updated to #Solidity 0.5.0 already? We are about to release 0.5.1
in the next days! Yes, | know, it's crazy, it has not even been three weeks!

Show this thread
Q 4 0 4 QO 10 ™

Chris
@ethchris

Replying to @NicuOprisan

The breaking release before 0.5.0 was over
two years ago. | think Solidity needs to get
more flexible. We are planning breaking
releases roughly every 6 months now. And |
think it's fine, one reason being that you
cannot change deployed code anyway.

4:12 AM - 30 Nov 2018

Things Are

Nick Oprisan @NicuOprisan - Nov 30 Vv
#Solidity needs to be more stable if we want to grow the dev community. As a
dev | feel | can’t keep-up with the releases. Add this to the growing rate of
changes in the #JS community and you’ve got yourself a confused dev.

Chris @ethchris MY ”OTTO l5

Have you updated to #Solidity 0.5.0 already? We are about to release 0.5.1 ”MOVE FAST' AND
in the next days! Yes, | know, it's crazy, it has not even been three weeks! l W
Show this thread BREN(TH MGS’

O 4 (e O 10 /
-~ Chris
sl ani. @ethcehris
Replying to @NicuOprisan

o
i
' -

The breaking relea'_s.e befqre_ 0.5.0 was over T0B5 TVE BEEN
two years ago. | think Solidity needs to get FIRED FROM
more flexible. We are planning breaking SOLIDITY DEV

releases roughly every 6 months now. And |
think it's fine, one reason being that you
cannot change deployed code anyway. Adapted from https://xkcd. con/1428/

4:12 AM - 30 Nov 2018

Things Are

Nick Oprisan @NicuOprisan - Nov 30 v
#Solidity needs to be more stable if we want to grow the dev community. As a
dev | feel | can’t keep-up with the releases. Add this to the growing rate of
changes in the #JS community and you’ve got yourself a confused dev.

Ps

MY MOTTO 1S

Chris @ethchris

“MOVE fT~

Have you updated to #Solidity 0.5.0 already? We are about to release 0.5.1
in the next days! Yes, | know, it's crazy, it has not even been three weeks!

Show this thread

BREAK Lesson: Expect
Se e 0w o / breaking changes
during the course of
E\ your project!

= Chris
=055 @ethcehris

Replying to @NicuOprisan

The breaking releage befqrg 0.5.0 was over JOBS TVE BEEN
two years ago. | think Solidity needs to get FIRED FROM
more flexible. We are planning breaking SOLIDITY DEV

releases roughly every 6 months now. And |
think it's fine, one reason being that you
cannot change deployed code anyway. Adapted from https://xkcd. con/1428/

4:12 AM - 30 Nov 2018

UpgradaOn oot

UpgradaOn oot

-
. o e
. AL :;‘..‘-}._ ‘:..
2 Q"fc ‘.:'::_':, =
! Vo aie BOOF %)
. . N 11111&

01010101

Lesson: If you absolutely have
to use the DELEGATECALL
proxy upgrade pattern, then you

must always make sure the
storage layout of your new
contract matches the old onel

Backward Compatibility?”
~IWANTTO, ‘

,1‘6
-

BELIEVE

memaegenerator.nel

Backward Compatibility?”
~IWANTTO,

'«.‘
-

.8\7

memaegenerator.nel

Backward Compatibility”

y

BELIEVE

memaogenerator.net

mo-seph commented 27 days ago « edited ~

Compliation fails for solidity using recommended install method. I'm on macos 10.13.6, and I've just
Installed brew to compile solc.

I've run

brew update
brew upgrade
brew tap ethereum/ethereum

I've tried installing the latest version, also tried 0.4.24. Here's a log with the latest version

mo-seph commented 27 days ago « edited ~

Compliation fails for solidity using recommended install method. I'm on macos 10.13.6, and I've just
Installed brew to compile solc.

I've run

brew update
brew upgrade
brew tap ethereum/ethereum

I've tried installing the latest version, also tried 0.4.24. Here's a log with the latest version

axic commented 26 days ago Member

Since it works with 0.5.0, which has been released now, closing this issue.

@ axic closed this 26 days ago

mo-seph commented 27 days ago « edited ~

Compliation fails for solidity using recommended install method. I'm on macos 10.13.6, and I've just

Installed brew to compile solc.

I've run

brew update
brew upgrade
brew tap ethereum/ethereum

I've tried installing the latest version, also tried 0.4.24. Here's a log with the lates

axic commented 26 days ago

Since it works with 0.5.0, which has been released now, closing this issue.

Lesson: Use

solc-select!

Member\

2N

@ axic closed this 26 days ago

Optimizations are Dangerous

e Compiler optimization still in active development

e Independent compiler audit in November of 2018 concluded
optimizations are dangerous

e Numerous high severity bugs related to the optimizer, many
excluded from the changlog

e There are likely latent bugs

Optimizations are Dangerous

e Compiler optimization still in active development

e Independent compiler audit in November of 2018 cc
optimizations are dangerous

-

excluded from the changlog

e There are likely latent bugs

Numerous high severity bugs related to the optimiz(_

Lesson: Don't turn on
solc optimizations

know what you are
doing

~

unless you really, really

V
| S

Y

On the Horizon

They’'re Proposing a New

Intermediate Representation, Y UL

Block = '{' Statementx* '}
Statement =
Block |
FunctionDefinition |
VariableDeclaration |
Assignment |
Expression |
Switch |
ForLoop |
BreakContinue
FunctionDefinition =
'function' Identifier '(' TypedIdentifierList?
('->' TypedIdentifierList)7 Block
VariableDeclaration =

'let' TypedIdentifierList (':=' Expression)7
Assignment =

IdentifierList ':=' Expression
Expression =

FunctionCall | Identifier | Literal
If =

'if' Expression Block
Switch =

'switch' Expression Casex ('default' Block)7
Case =

'case' Literal Block

ForLoop =

'for' Block Expression Block Block

BreakContinue
'break' |
FunctionCall

Identifier '(!'

Identifier =
IdentifierlLis

BuiltinTypeName = 'bool' | [us] (

continue'

[a-zA-Z_$] [a-zA-Z_0-9]x*

t

= Identifier (',

TypedIdentifierList = Identifier

(NumberLiteral | Stringliteral | HexLiteral | Trueliteral | Falseliteral) ':

Identifier) *

TypeName = Identifier | BuiltinTypeName

l8l

' TypeName (',' Identifier ':

l\\l

1301 |

)X

Literal =

TypeName

NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})*
StringlLiteral = '"' ([~"\r\n\\]
TrueLiteral = 'true'

FalseLiteral = 'false'

HexNumber = 'Ox' [0-9a-fA-F]+

DecimalNumber

[0-9]+

|64l

l\ll

(Expression (',' Expression)*)7 ')

'128"' | '2566')

([0-9a-fA-F]{2}) *

' TypeName) *

|\| l)

They’'re Proposing a New

Intermediate Representation, Y UL

Block = '{' Statementx* '}
Statement =
Block |
FunctionDefinition |
VariableDeclaration |
Assignment |
Expression |
Switch |
ForLoop |
BreakContinue
FunctionDefinition =
'function' Identifier '(' TypedIdentifierList?
('->' TypedIdentifierList)7 Block
VariableDeclaration =

'let' TypedIdentifierList (':=' Expression)7
Assignment =

IdentifierList ':=' Expression
Expression =

FunctionCall | Identifier | Literal
If =

'if' Expression Block
Switch =

'switch' Expression Casex ('default' Block)7
Case =

'case' Literal Block

ForLoop =
'for' Block Expression Block Block
BreakContinue =
'break' | 'continue'
FunctionCall =
Identifier '(' (Expression (',' Expression)*)? ')
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]%
IdentifierlList = Identifier (',' Identifier)*
TypeName = Identifier | BuiltinTypeName
BuiltinTypeName = 'bool' | [us] ('8' | '32' | '64' | '128' | '256')
TypedIldentifierList = Identifier ':' TypeName (',' Identifier ':' TypeName)*
Literal =
(NumberLiteral | Stringliteral | HexLiteral | Trueliteral | Falseliteral) ':
TypeName
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'")
StringLiteral = '""'" ([~"\r\n\\] ["\\' .)x '"!
TruelLiteral = 'true'
FalselLiteral = 'false'

HexNumber = 'Ox' [0-9a-fA-F]+
DecimalNumber = [0-9]+

All of this has happened before ... and will happen again.

They’'re Proposing a New
Intermediate Representation, Y UL

Block = '{' Statementx* '}'

Statement =
Block | ForLoop =
FunctionDefinition | 'for' Block Expression Block Block
VariableDeclaration | BreakContinue =
Assignment | 'break' | 'continue'
Expression | FunctionCall =
Switch | Identifier '(' (Expression (',' Expression)*)? ')
ForLoop | Identifier = [a-zA-Z_$] [a-zA-Z_0-9]x
BreakContlnue IdentifierList = Identlfler (',' Identifier)x*

‘1er | BuiltinTypeName

The “If” productlon rule 1S never used' "bool’ | [us] ('8' | '32' | ‘64’ | '128' | '256')
_ _ : t = Identifier ':' TypeName (',' Identifier ':' TypeName)x*
VariableDeclaration = Literal =
'let' TypedIdentifierlList (':=' Expression)7 (NumberLiteral | Stringliteral | HexLiteral | Trueliteral | FalselLiteral) ':'
Assignment = TypeName
IdentifierList ':=' Expression NumberLiteral = HexNumber | DecimalNumber
Expression = HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2bH)*x '"' | '\'" ([0-9a-fA-F]{2}H)* '"\'"')
s ARG Al | Literal Stringliteral = '"' ([""\r\n\\] | "\\' .)x*x "
(If = o z‘ TrueLiteral = 'true'
» 'if' Expression Block { FalselLiteral = 'false'
N r e R e — - * HexNumber = 'Ox' [0-9a-fA-F]+
'switch' Expression Casex ('default' Block)? DecimalNumber = [0-9]+
Case =

'case' Literal Block

All of this has happened before ... and will happen again.

They’'re Proposing a New
Intermediate Representation, Y UL

Block = '{' Statementx* '}'

Statement =
Block | ForLoop =
FunctionDefinition | 'for' Block Expression Block Block
VariableDeclaration | BreakContinue =
Assignment | 'break' | 'continue'
Expression | FunctionCall =
Switch | Identifier '(' (Expression (',' Expression)*)? ')
ForLoop | Identifier = [a-zA-Z_$] [a-zA-Z_0-9]x
BreakContlnue IdentifierList = Identlfler (',' Identifier)x*

1er | BuiltinTypeName

The “If” productlon rule is never used! [HETNN N ST EITN TP

____ _ : , t = Identifier ':' TypeName (',' Identifier ':' TypeName)x*
VariableDeclaration = l Literal =
'let' TypedldentifierList (':='" Expression)7 NumberLiteral | StringlLiteral | HexLiteral Trueliteral [Falselil teﬂal) a: !
Assignment = |
Tdentifierlist 'i=' Expressicl The default sw1tch case 1sn’t followed by a ¢:?
Expression = e =9d- 7 F)
s o L ich il | Literal Strlnngteral = ' ([“”\r\n\\] I "NN) ke
E“fEFQ o R | TruelLiteral = 'true'
» 'if' Expression Block FalselLiteral = 'false'

2

HexNumber = 'Ox' [0-9a-fA-F]+
DecimalNumber = [0-9]+

= —_— S A - - -——

- el = == _
— T T WP o - e " D e 2
E= < ~— =

'switch' Expression Casej

Case =

'case' Literal Block

All of this has happened before ... and will happen again.

They’'re Proposing a New

Intermediate Representatlon Y UL

R A~/ I N Ao o L : _ S : ;1

switch foo IS a legal productlon in this grammar

!

t FunctionDefinition | - '"for' Block Expression Block Block
VariableDeclaration | BreakContinue =
Assignment | 'break' | 'continue'
Expression | FunctionCall =
Switch | Identifier '(' (Expression (',' Expression)*)? ')
ForLoop | Identifier = [a-zA-Z_$] [a-zA-Z_0-9]x
BreakContlnue IdentifierList = Identlfler (',' Identifier)x*

1er | BuiltinTypeName

The “If” productlon rule is never used! [HETNN N ST EITN TP

____ _ : t = Identifier ':' TypeName (',' Identifier ':' TypeName)x*
VariableDeclaration = l Literal =
'let' TypedldentifierList (':='" Expression)7 NumberLiteral | StringlLiteral | HexLiteral Trueliteral [Falselil teﬂal) a: !
Assignment = |
Tdentifierlist 'i=' Expressicl The default sw1tch case 1sn’t followed by a ¢:?
Expression = e =9d- 7 F)
s o L ich il | Literal Strlnngteral = ' ([“”\r\n\\] I "NN) ke
E“fEFQ o R | TruelLiteral = 'true'
» 'if' Expression Block FalselLiteral = 'false'

. ~
I = — T A - A= -——

- el = == _
— T T WP o - e " D e 2
_ - = ~ 2=

'switch' Expression Casej

HexNumber = 'Ox' [0-9a-fA-F]+
DecimalNumber = [0-9]+

Case =

'case' Literal Block

All of this has happened before ... and will happen again.

They’'re Proposing a New
Intermedlate Representatlon Y UL

i .. | I
“sw1tch foo 1S a legal productlon in this grammar

FunctionDefinition | 'for' Block Expression Block Block

VariableDeclaration | BreakContinue =

Assignment | - - ' - '77 I

i Y,

Sapression | Strlnngteral can’t be represented Wlthout Castmg
wltc

ForLoop | Identifier = la-zA-Z_$] [a-zA-Z_O- 9]*

BreakContlnue IdentlflerLlst = Identifier (',' Identifier)x*

1er | BuiltinTypeName

The “If” productlon rule is never used! PSSR EINRCINRITNIRIPTIEETS

t = Identifier ':' TypeName (',' Identifier ':' TypeName)x*

VariableDeclaration = l Literal =

? NumberLiteral | StringlLiteral | HexLiteral

'let' TypedIdentifierList (':=' EXore881on) 7 _Falseliteral) ':'

TruelLiteral

Assignment = o
ldentifierList ':=' Expression The default sw1tch case isn t followed by a ¢:?
Expression = od) y)
e i on(C o SSiaiier | Literal Strlnngteral — ([“”\r\n\\] I "N\ L)k !
P If = T Z Trueliteral = 'true'
» 'if' Expression Block {n FalselLiteral = 'false'

HexNumber = 'Ox' [0-9a-fA-F]+
DecimalNumber = [0-9]+

= —_— S A - - -——

= R .
— A+ "'""4?3” ~ = b o R e mae

'switch' EXpre881on Casej

Case =

'case' Literal Block

All of this has happened before ... and will happen again.

N They’'re Proposing a New
e

Tmediate Represent ation, W, ¥¢
: — X

s a legal productlon in this grammar)
'for' Block Expression Block Block C:::;

I BreakContinue = j‘

Strlnngteral can’t be represented Wlthout Castmg S |

Identlfler = [a ZA-7 _$] [a- ZA- Z O 9]* -

reakContlnue I IdentlflerLlst = Identlfler (',' Identifier)x*

1er | BuiltinTypeName

The “If” pI‘Oductlon I‘ule is never used! [¥SUNESREIIEETINEIINEITS RIS
_ , : , t = Identifier ':' TypeName (',' Identifier ':' TypeName)x*
VariableDeclaration = l Literal =
'let' TypedIdentifierList (':=' EXore881on) © NumberLiteral | Stringliteral | HexLiteral | TruelLiteral | Falseliteral) ':'
Assignment =
Tdentifierlist 'i=' Expressicl The default sw1tch case 1sn’t followed by a ¢:?
Expression = od 7 F)
|~ el | Literal Strlnngteral = ' ([“”\r\n\\] I "NN) ke
ﬁ“va; o o Z* TruelLiteral = 'true'
'if' Expression Block {n | FalselLiteral = 'false'

—_— T A - A= -——

3 £~
= =2
.—-%«;‘»«—«— ,"“’4&” = ik 2

HexNumber = 'Ox' [0-9a-fA-F]+
DecimalNumber = [0-9]+

~ . T2

sw1tch' EXpre881on Casej

Case =
'case' Literal Block

All of this has happened before ... and will happen again.

Solidity Alternatives

e [ven more immature
e Lack of security tooling

e Different semantics!

Bugs!

Compiler Warnings

pragma solidity 70.4.9;

contract SafeMath {

function add(uint256 _a, uint256 _b) internal pure returns (uint256) {
ulnt256 ¢ = _a + _b;
1f(c < _a) {
throw;

1
2
3
4
5
6
7/
3

}

return c;

Compiler Warnings

pragma solidity 70.4.9;

contract SafeMath { War'ning: “throw" is
deprecated in favour

of "revert()”,
function add(uint256 _a, uint256 _b) internal pure r W : "
uint256 ¢ = _a + _b; require()" and

tf(c < _a) o “assert()"
throw;

OO UL S WDN =

}

return c;

Compiler Warnings

pragma solidity 70.4.9; N\

contract SafeMath {

function add(uint256 _a, uint256 _b) internal pure r
b;

OO UL S WDN =

utnt256 ¢ = a +
1f(c < a) {

‘1

chrows assert; %

}

return c;

Compiler Warnings

Reentrancy

1 mapping (address => uint) private userBalances;
2
3 function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

Reentrancy

1 mapping (address => uint) private userBalances;
2
3 function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

Reentrancy

1 mapping (address => uint) private userBalances;
2
3 function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

uint8 toWithdraw = 2;
address target = ...;

function () public payable {
i1f (--toWithdraw > 0) {

pwn();

——
Deploy Attack Contract

}

OO UT S WN B

}

[
© O

function pwn() public {
target.withdrawBalance()

= =
N =

}

Reentrancy

1 mapping (address => uint) private userBalances;

2

3 function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

uint8 toWithdraw = 2;
address target = ...;

function () public payable {
i1f (--toWithdraw > 0) {
pwn();
}

1
2
3
4
5
6
7/
3

}

[
© O

function pwn() public {
target.withdrawBalance()

= =
N =

}

Reentrancy

1 mapping (address => uint) private userBalances;

2

3 function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

uint8 toWithdraw = 2;
address target = ...;

function () public payable {
i1f (--toWithdraw > 0) {
pwn();
}

1
2
3
4
5
6
7/
3

}

[
© O

function pwn() public {
target.withdrawBalance()

= =
N =

}

Reentrancy

1 mapping (address => uint) private userBalances;

2

3 function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

uint8 toWithdraw = 2;
address target = ...;

function () public payable {
i1f (--toWithdraw > 0) {
pwn();
}

1
2
3
4
5
6
7/
3

}

[
© O

function pwn() public {
target.withdrawBalance()

= =
N =

}

Reentrancy

1 mapping (address => uint) private userBalances;

2

3 function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

uint8 toWithdraw = 2;
address target = ...;

function () public payable {
i1f (--toWithdraw > 0) {
pwn();
}

1
2
3
4
5
6
7/
3

}

[
© O

function pwn() public {
target.withdrawBalance()

= =
N =

}

Reentrancy

1 mapping (address => uint) private userBalances;

2

3 function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

uint8 toWithdraw = 2;
address target = ...;

function () public payable {
i1f (--toWithdraw > 0) {
pwn();
}

1
2
3
4
5
6
7/
3

}

[
© O

function pwn() public {
target.withdrawBalance()

= =
N =

}

Reentrancy

1 mapping (address => uint) private userBalances;

2

3 function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

uint8 toWithdraw = 2;
address target = ...;

function () public payable {
i1f (--toWithdraw > 0) {
pwn();
}

1
2
3
4
5
6
7/
3

}

[
© O

function pwn() public {
target.withdrawBalance()

= =
N =

}

Reentrancy

1 mapping (address => uint) private userBalances;
2
3 function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
require(msg.sender.call.value(amountToWithdraw)());
userBalances[msg.sender] = 0;

Lesson: Use the
“checks, effects,

~

uint8 toWithdraw = 2;

rddress target o intferactions” pattern!
function () public payable {
i1f (--toWithdraw > 0) {

pwn();

}

1
2
3
4
5
6
7/
3

O

[
S

/
| S
o \O
}

function pwn() public {
target.withdrawBalance()
}

= =
N =

Malicious External Calls

©)
®)

Malicious External Calls

A

®)
®)

Malicious External Calls

Malicious External Calls

-

(

\
\

s S

Lesson: Don't trust
external contracts!

\

/

| S

Y

/Zero Initialization

modifier onlyAdmin() {
require(admins[msg.sender].revokedTimeStamp == 0,
"Admin was revoked.');

1
2
3
4
5
0
7/
38

}

/ero Initialization

modifier onlyAdmin() {
require(admins[msg.sender].revokedTimeStamp == 0,
'Admin was revoked.');

1
2
3
4
5
o0
7/
38

—

1 enum UserStatus { Registered, Approved, Denied }

2

3 modifier onlyRegisteredUsers(address userAddress) {

4 require(users|[userAddress].status == UserStatus.Registered);

—)

B
6 }

/Zero Initialization

modifier onlyAdmin() {

require(admins[msg.sender].revokedTimeStamp == 0,
'Admin was revoked.');

2 ‘\\
Lesson: Unlike in most other

languages, uninitialized keys
; enum UserStatus { Registered, Approved, [will result in uninitialized

3 modifier onlyRegisteredUsers(address uset
4 require(users|[userAddress].status == USer>tatus.RegLsV¥erea),

ooNNO U S WN =

—

memory, which is zeroed.

—)

5 |
6 } 00

Array Length Manipulation

contract Vulnerable {
address public owner = msg.sender;
uint256[] map;

function set(uint256 key, uint256 value) public payable {
if (map.length <= key) {
map.length = key + 1;

1
2
3
4
5
0
/
3

}

mapl[key] = value;

Array Length Manipulation

contract Vulnerable {
address public owner = msg.sender;
uint256[] map;

esson: Neve 1
function set(uint256 key, uint256 value) - ss.n Never manually
Lt (map.length <= key) { manipulate the length

map.length = key + 1; of an array!

1
2
3
4
5
0
/
3

}

map[key] = value;

Transaction “Frontrunning”

Transaction “Frontrunning”

Transaction “Frontrunning”

Transaction “Frontrunning”

Transaction “Frontrunning”

- 0101 ﬁZ @

§§M&\

Transaction “Frontrunning”

Transaction “Frontrunning”

g &t/

)

Transaction “Frontrunning”

~

\

Lesson: Transactions
are public, and aren't

In order

~

guaranteed to be mined

/

\Y4
A

~

Y

Randomness

e The blockchain does not provide any

cryptographically secure source of randomness

» Block hashes are random, but miners can manipulate them

» Miners can also influence timestamps

Randomness

e The blockchain does not provide any

cryptographically secure source of randomness

» Block hashes are random, but miners can manipulate them g- i

» Miners can also influence timestamps

~
‘

e Everything in a contract is publicly visible

» Random numbers can’t be generated until after all lottery
entries have been recorded

Randomness

e The blockchain does not provide any

cryptographically secure source of randomness
» Block hashes are random, but miners can manipulate them
» Miners can also influence timestamps

e Everything in a contract is publicly visible

» Random numbers can’t be generated until after all lottery
entries have been recorded

e Computers will always be faster than the blockchain

» Any number a contract could generate can be pre-
calculated off-chain faster

Don’t try to be clever

with number theory

category theory student starter pack

CATEGHRY
THEORY

N
CONTEXT.

Derived memes for

_ f\ﬂ - 4
N = spectral schemes

| find some of this exchange truly deprassing There Is a subject of *"brave new aigetraanc there

are myriads of past and presert constructions and calculatens that deperd on having concrete and
138 specific constructions. People who actually compute anything do not use (oo, 1) categones when

caing s0. To Ay down a challenge, they would be of liltle or no use there. One can sometimes use

AN (o0, 1) categories to construct things not easily constructed otherwise, and then one can compute

&y —“::“ ‘ things about them (e.g. work of Behrens and Lawson). But the tools of computation are not (oo, 1)
¢ & | _é_l‘ [/ categorical and often not even model categornical. People should learn some sedicus computations,
! :_' — '._\; ‘ do some themseives, befere totally immensng themselves in the formal thaory. Note thal (oe, 1)
Nod | categories are in princple intermadiate between the point-set level and the homotopy category level, n a

Emily Rieht ' It is easy to translate into (o0, 1) categories from the point-set level, whether from model categories
or from something weaker. Then one can work in (oo, 1) categones. Bul the tranglation back out to

the "cid-lashioned” world thet some writers seem to imagine expendable lands In homotopy

categories, That is fine if that is al that one needs, but one often needs a good dea’ more, One must

be eclectic, Just cne old man's view - 1.
«
answernd Dec 1311 a1t 206 E '§
| Peter May S
~J m r 21 245k +3 # 78 « 113
e .l

Yoo SEn
"___isjust___, (00, 1)-categories
which is just an instance
of in the category of -

Don’t try to be clever
with number theory

winner = entries|blockHash / entries.length];

category theory student starter pack

Higher Topos
Theory

K\ i Derived memes for

— spectral schemes

| find some of this exchange truly deprassing. There Is a subject of “"brave new aigetra”and there
are myriads of past and pres X cns that depend on having concrete and
specific constructions. People who ally compute anything do not use (oo, 1) categones when
caing so. To Ay down a challenge, they would be of liltlie or no use there. One can sometimes use
{o0, 1) categories to construct things not easily constructad otherwise, and then one can compute

things about them (e.g. work of Behrens and Lawson). But the tools of computation are not (o, 1)

calegorical, and often nol even mode! categorical. People should learn some sevicus compulations,

do some themselves, befere totally immernsing themseltves in the formal theory. Note thal (oo, 1)

categories are in princple intermadiate between the point-set level and the homotopy category level n a

nt cons

Itis easy to translate into (o0, 1) categories from the point-set level, whether from model categories
or from someathing weaker. Then one can work in {oe, 1) categores. But the translation back out to
the *cid-fashioned” world thet some writers seem to imagine expendable lands In homotopy
categories. That is fine if that is all that one needs, but one often needs a good dea! more. One must
be eclectic, Just cne old man's view,

swerod Dec 1311t 206

"'1‘;7 Puter May

Top ~ Grpd g

Hifion KEr
"___isjust___, i (o0, 1)-categories
which is just an instance

of ____ in the category of ____

Everybody with me!

You can’t do random

on a blockchain

Everybody with me!

-

YOU. C&Il’t dO I AX)l need randomness, use a

trusted off-chain oracle.

Lesson: If you really

~

/

on a blockchai

v

Y

Pre-Signed Transfers

function signedTransfer(

address to,

uint256 tokens,

address feeReciptient,

uint256 fee,

uint256 exptiry,

bytes32 nonce,

uint8 v, bytes32 r, bytes32 s) external returns (bool success) {

bytes32 releaseHash = keccak256(abil.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR,
keccak256(abi.encode(SIGNEDTRANSFER_TYPEHASH, to, tokens, feeRecipient, fee, expiry, nonce))

));

OO UL B WDN K-

address from = ecrecover(releaseHash, v, r, s);

approvals[from][msg.sender] = add(tokens, fee);

transferFrom(from, to, tokens);
transferFrom(from, feeReciptient, fee);

return

Pre-Signed Transfers

function signedTransfer(
address to,

uint256 tokens,

address feeReciptient, ‘\\
uint256 fee,

uint256 exptiry,

bytes32 nonce, .

uint8 v, bytes32 r, bytes32 s) external returns (bool success) Lesson' AIWGYS CheCk The
bytes32 releaseHash = keccak256(abti.encodePacked(

Rty return value of ecrecover!

DOMAIN_SEPARATOR,

keccak256(abi.encode(SIGNEDTRANSFER_TYPEHASH, to, tokens, f Better vet, avoid it!
));

OO UL B WDN K-

address from = ecrecover(releaseHash, v, r, s); <//

approvals[from][msg.sender] = add(tokens, fee); y

transferFrom(from, to, tokens); o P

transferFrom(from, feeReciptient, fee);

return

What Can You Do
About It?

What can be done?” Buy our free,

https://github.com/trailofbits/... open source products.

Manticore Symbolic Execution

Slither Static Analysis evm-opcodes
VM Reference

Echidna Property Based Fuzzer

Rattle EVM to SSA Lifter blockchain-security-contacts

it’s surprisingly hard to disclose bugs

Etheno Test Framework Integration
not-so-smart-contracts

| 11
Ethersplay Visual EVM Disassembler common vulnerability database

awesome-ethereum-security

pyevmasm Bytecode Analysis security best practices

Not So) Smart Contracts

Educational Tool Working Examples of Contracts
Learn about EVM and Solidity Vulnerabilities Real Vulnerabilities Found in the Wild

Reference Material
Useful when Auditing Code

https://github.com/crytic/not-so-smart-contracts

Community Information

Awesome Ethereum Security Blockchain Security Contacts

e What? Curated list of community-

maintained and open-source references

e Why? Everything in one place: no
more searching through stack
overflow, github, and reddit

e Features

» Resources for secure development,
CTFs & wargames, and even specific
podcast episodes

» Identifies security tools for
visualization, linting, bug finding,
verification, and reversing

» Pointers to related communities

e What? Comprehensive list of security

contacts for blockchain applications

e Why? Projects worth $10MM-+ should

have a way to engage with security

researchers

e Features

» Vuln disclosure program best

practices

» Deployed addresses template for

dapps
» Existing contact

info for over 100

projects (Blockchains, dapps, ERC20

and 721 tokens, |
software)

fxchanges, Wallet

https://github.com/crytic/awesome-ethereum-security and /blockchain-security-contacts

Slither

Smart Contract

Solidity and Vyper vulnerability
detection

Low talse positives
Fasily integrates into CI pipeline
Very fast (milliseconds)

Supports advanced value- and
taint-tracking

Python-based detector API

Static Analysis

e Inputs: Solidity code
e Outputs:

» Detected errors (extensive list of
vulnerability detectors included)

» Warnings of poor coding practices

» Inheritance graph and contract

suminary

Slither is open source!
https://github.com/crytic/slither

https://github.com/crytic/slither

Slither Installation and Usage

$ pip3 install slither-analyzer
then

$ slither contract.sol

or

$ truffle compile; slither .

That’s literally it!

Slither Installation and Usage

$ pip3 install slither-analyzer

then 4 A
Lesson: Slither is super easy
$ slither contract.sol and quick! No excuse not to
integrate it in your CI pipeline.
or _ %
V

| T

Y

$ truffle compile; slither .

That’s literally it!

Problem: Test for New Bugs

contract Simple {
function f(uint a){
// .. lot of paths and conditions

if (a == 65) {
// leads to a bug here
F

Problem: Test for New Bugs

contract Simple {
function f(uint a){
// .. lot of paths and

if (a == 65) {
// leads to a bug h
F

-~

_

It looks like you want to

~

detect classes of bugs that
have never been seen before!

4/

\Y4
A

\

Y

Echidna
Smart Contract Property Tester

Generates and execute many contract inputs e Inputs: Solidity code and tests

(Generate intelligent, grammar-based inputs o Outputs:

Seamlessly integrate into developer workflows > List of invariants Rchidna was

able to violate

Run thousands of generated inputs per » Minimal call sequence to trigger

second discovered violations

Automatically generate minimal testcases

Highly extensible via Haskell API

Echidna is open source!

https://github.com/crytic/echidna

https://github.com/crytic/slither

Fchidna Example

-» echidna git:(master) X cat solidity/cli.sol
pragma solidity 70.4.16;

contract Test {
bool private flagO=true;
bool private flagil=true;

function set0(int val) returns (bool){
if (val 7Z 10 = 0) {flag0d = false;}

}

function set1(int val) returns (bool){
if (val 7Z 10 = 0 & flag0) {flagl = false;}

}

function echidna_alwaystrue() returns (bool){
return(true);

}

function echidna_sometimesfalse() returns (bool){
return(flagd || flagl):

}

}
-» echidna git:(master) X ./echidna-test solidity/cli.sol

— gso0lidity/cli.sol =—
X "echidna_sometimesfalse" failed after 36 tests and 681 shrinks.

Call sequence: set0(7946810797001355118938603703351564369838113269809310950469780) ;
set1(8045329803519652513052969161362647695379403994810754718464019950667760) ;

/ "echidna_alwaystrue" passed 100 tests.
X 1 failed, 1 succeeded.
-» echidna git:(master) X

Fchidna Example

-» echidna git:(master) X cat solidity/cli.sol ‘\\
pragma solidity 70.4.16;

contract Test { Lesson: Echidna is not as fast

bool private flagO=true;

bool private flagl=true; as S||'|'her', bU'l' |’|' |S STI” qL“Ck

function set0(int val) returns (bool){

} if (val % 10 = 0) {flag0 = false;} enough to be USQlel In your CI

I T 0 = 0 Fagh o - atse pipeline. Unlike Slither, it is
function echidna_alwaystrue() returns (bool){ Capable Of dISCOVCr'Ing WhO”y

return(true);

}
function echidna_sometimesfalse() returns (bool){ new Classes Of bugs

return(flagd || flagl); ,//

}

}
-» echidna git:(master) X ./echidna-test solidity/cli.sol /

— gso0lidity/cli.sol =—
X "echidna_sometimesfalse" failed after 36 tests and 681 shrinks.

\

Call sequence: set0(7946810797001355118938603703351564369838113269809310950469780) ;
set1(8045329803519652513052969161362647695379403994810754718464019950667760) ;

/ "echidna_alwaystrue" passed 100 tests.
X 1 failed, 1 succeeded.
-» echidna git:(master) X

Manticore

Smart Contract Verifier

Uses symbolic execution of EVM e Inputs: Solidity code (optional) or raw
EVM bytecode

Deeply explores possible contract states across
: : e Outputs:
multiple transactions and contracts

» List of detected flaws
Discover functions directly from bytecode
» Verified properties

Detect contract flaws like int overtlows,

» Execution traces of discovered paths
<

\\\
Highly scriptable and extensible via Python / { &

API

uninitialized memory /storage usage, and more

Verity customized program assertions

Manticore is open source!

https://github.com/trailofbits/manticore

https://github.com/crytic/slither

Manticore Example

contract Simple {
function f(uint a){
// .. lot of paths and conditions

if (a == 65) {
revert () ;

Iy

$ manticore simple.sol

2018-02-28
2018-02-28
2018-02-28
2018-02-28
2018-02-28
Terminated
2018-02-28
2018-02-28

17:06:21,650:
17:06:21,803:
17:06:22,098:
17:06:23,185:

17:06:24,213:
17:06:25,269:

Manticore Example

contract Simple {

5 B B B

m.

function f(uint a){

// ..

if (a

lot of paths and conditions

== 65) {

revert () ;

.ethereum:
.ethereum:
.ethereunm:
ethereum:

[32058] m.ethereum:
[25981] m.ethereum:

INFO:
INFO:

.main:INFO: Beginning analysis
INFO:
INFO:
INFO:
INFO:

Starting symbolic transaction: 1

Generated testcase No. O - REVERT

Generated testcase No. 1 - REVERT

Finished symbolic transaction: 1 | Code Coverage: 1007 |

Generated testcase No. 2 - STOP
Results in /examples/mcore_zuaOYl

$ manticore simple.sol

2018-02-28
2018-02-28
2018-02-28
2018-02-28
2018-02-28
Terminated
2018-02-28
2018-02-28

17:06:21,650:
17:06:21,803:
17:06:22,098:
17:06:23,185:
17:06:24,206:

Manticore Example

contract Simple {

5 B B B

m.

function f(uint a){

// .. lot of paths and conditions

1f (8. == 65) { /
revert () ;

by

.ethereum:
.ethereum:
.ethereunm:
ethereum:

States: 3 | Alive States: 1

17:06:24,213:
17:06:25,269:

[32058] m.ethereum:
[25981] m.ethereum:

.main:INFO: Beginning analysis
INFO:
INFO:
INFO:
INFO:

INFO:
INFO:

Starting symbolic t&\»

Manticore can verify that
your code satisfies its

invariants, but it can take a

long time to run!

Generated testcase No.
Generated testcase No.

~

,/

0 - REVERT \/
1 - REVERT A

Finished symbolic transaction: 1 | Code Cov oleo 00% |

Generated testcase No.

Results in /examples/mcore_zuaOYl

2 - STOP

Conclusions

Solidity isn’t a great language, but we’re stuck with it (for now)

Don’t assume Solidity behaves like a “normal” language

Don’t trust the Solidity documentation; the sole compiler implementation is canon
Don’t enable Solidity compiler optimizations

Avoid the “DELEGATECALL” upgrade pattern

Don’t trust calls to external contracts

Remember that everything on the blockchain is public

Don’t assume transactions will be mined in order (or at all!)

Read “(Not So) Smart Contracts”

Add Slither and Echidna into your CI pipeline

Use Manticore to verify the correctness of your contracts

s
OFA £~ Thanks!

QESultanik

Thanks!

o Acknowledgements
Ryan Stortz @withzombies
Jay Little Q@Qcomputerality
Josselin Feist @montyly
Stefan Edwards @lojikil
JP @japesinator

Et pl. al.

