
 Primitive
 Security Assessment

 February 28, 2022

 Prepared for:

 Alex

 Primitive

 Prepared by: Nat Chin and Simone Monica

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Primitive Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to Primitive
 under the terms of the project statement of work and has been made public at Primitive’s
 request. Material within this report may not be reproduced or distributed in part or in
 whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and mutually agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Primitive Security Assessment
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 2

 Executive Summary 6

 Project Summary 8

 Project Goals 9

 Project Targets 10

 Project Coverage 11

 Automated Testing Results 12

 Codebase Maturity Evaluation 18

 Summary of Findings 20

 Detailed Findings 22

 1. Transfer operations may silently fail due to the lack of contract existence
 checks 22

 2. Project dependencies contain vulnerabilities 24

 3. Anyone could steal pool tokens’ earned interest 25

 4. Solidity compiler optimizations can be problematic 27

 5. Lack of zero-value checks on functions 28

 6. uint256.percentage() and int256.percentage() are not inverses of each
 other 30

 7. Users can allocate tokens to a pool at the moment the pool reaches
 maturity 32

 8. Possible front-running vulnerability during BUFFER time 34

 9. Inconsistency in allocate and remove functions 35

 Trail of Bits 3 Primitive Security Assessment
 PUBLIC

 10. Areas of the codebase that are inconsistent with the documentation 37

 11. Allocate and remove are not exact inverses of each other 38

 12. scaleToX64() and scalefromX64() are not inverses of each other 41

 13. getCDF always returns output in the range of (0, 1) 43

 14. Lack of data validation on withdrawal operations 45

 Summary of Recommendations 48

 A. Vulnerability Categories 49

 B. Code Maturity Categories 51

 C. Token Integration Checklist 53

 D. Fixed-Point Rounding Recommendations 56

 E. Code Quality Recommendations 57

 F. Additional Recommended Properties 60

 G. Incident Response Recommendations 61

 F. Fix Log 63

 Trail of Bits 4 Primitive Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 Primitive engaged Trail of Bits to review the security of its smart contracts. From January 3
 to January 28, 2022, a team of two consultants conducted a security review of the
 client-provided source code, with eight person-weeks of effort. Details of the project’s
 timeline, test targets, and coverage are provided in subsequent sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a smart
 contract compromise or loss of funds. We conducted this audit with full knowledge of the
 target system, including access to the source code and documentation. We performed
 automated testing and a manual review of the code, in addition to running system
 invariants.

 Summary of Findings
 The audit did not uncover any significant flaws or defects that could impact system
 confidentiality, integrity, or availability. A summary of the findings and details on notable
 findings are provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 1

 Medium 3

 Low 1

 Informational 6

 Undetermined 3

 CATEGORY BREAKDOWN

 Category Count

 Data Validation 5

 Patching 1

 Timing 3

 Undefined Behavior 5

 Trail of Bits 5 Primitive Security Assessment
 PUBLIC

 Notable Findings
 Findings that may impact the smart contracts are listed below.

 ● TOB-PTV-1
 Due to the lack of contract existence checks, transfer operations may silently fail. As
 a result, the pool may assume that failed transfers were successful, which may
 result in incorrect accounting.

 ● TOB-PTV-6, TOB-PTV-11, TOB-PTV-12
 These issues are related to arithmetic functions that are not direct inverses of each
 other, which can result in the calculation of different amounts than expected.

 Trail of Bits 6 Primitive Security Assessment
 PUBLIC

 Project Summary

 Contact Information

 The following managers were associated with this project:

 Dan Guido , Account Manager Mary O’Brien , Project Manager
 dan@trailofbits.com mary.obrien@trailofbits.com

 The following engineers were associated with this project:

 Nat Chin , Consultant Simone Monica , Consultant
 natalie.chin@trailofbits.com simone.monica@trailofbits.com

 Project Timeline

 The significant events and milestones of the project are listed below.

 Date Event

 January 3, 2022 Pre-project kickoff call

 January 10, 2022 Status update meeting #1

 January 18, 2022 Status update meeting #2

 January 24, 2022 Status update meeting #3

 January 31, 2022 Delivery of report draft

 January 31, 2022 Report readout meeting

 February 4, 2022 Delivery of final report

 February 16, 2022 Renaming of references from “Primitive Finance” to “Primitive”

 February 28, 2022 Addition of Primitive statement on TOB-PTV-2

 Trail of Bits 7 Primitive Security Assessment
 PUBLIC

 Project Goals

 The engagement was scoped to provide a security assessment of the Primitive system.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Is it possible to steal funds?

 ● Are there appropriate access control measures in place for users and admins?

 ● Does the system’s behavior match the specification?

 ● Can an attacker trap the system?

 ● Is it possible to perform swaps without paying the required amount?

 ● Are the arithmetic libraries used correctly, and do they correctly apply rounding?

 Trail of Bits 8 Primitive Security Assessment
 PUBLIC

 Project Targets

 rmm-core

 Repository https://github.com/primitivefinance/rmm-core

 Version 5dcf4306fc32fb9a4e3c154deb86f6b9d513c344

 Type Ethereum

 Platform Solidity

 rmm-manager

 Repository https://github.com/primitivefinance/rmm-manager

 Version b0ce230a1b9752b873f3f766f671e70c59ecd6d1

 Type Ethereum

 Platform Solidity

 Trail of Bits 9 Primitive Security Assessment
 PUBLIC

https://github.com/primitivefinance/rmm-core
https://github.com/primitivefinance/rmm-manager

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches and their results include the following:

 ● rmm-core . The rmm-core folder contains two main contracts, PrimitiveFactory
 and PrimitiveEngine . The PrimitiveFactory contract is used to deploy a
 PrimitiveEngine contract with user-specified risky and stable tokens. The
 PrimitiveEngine contract is the system’s core contract in which users can create
 a pool with specific parameters, deposit and withdraw risky and stable tokens to
 and from an internal bookkeeping system, allocate and remove liquidity to and from
 a certain pool, and swap risky and stable tokens. We used static analysis, a manual
 review, and Echidna to test the behavior of these actions.

 ● rmm-manager . The rmm-manager directory contains primarily periphery contracts
 that are used to operate the rmm-core components. These contracts are the users’
 entry point for interacting with the system.

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of the
 following system elements, which may warrant further review:

 ● Fuzzing coverage on rmm-manager

 Trail of Bits 10 Primitive Security Assessment
 PUBLIC

 Automated Testing Results

 Trail of Bits has developed unique tools for testing smart contracts. In this assessment, we
 used Echidna , a smart contract fuzzer that can rapidly test security properties via malicious,
 coverage-guided test case generation. We used Echidna to check various system states.

 Automated testing techniques augment our manual security review but do not replace it.
 Each technique has limitations; for example, Echidna may not randomly generate an edge
 case that violates a property. We follow a consistent process to maximize the efficacy of
 testing security properties. When using Echidna, we generate 30,000 test cases per
 property.

 Our automated testing and verification focused on the following system properties:

 Libraries . Using Echidna, we tested assumptions on the inverse of expected function
 behavior.

 ID Property Tool Result

 1 The scaleUp and scaleDown functions are inverses of each
 other.

 Echidna Passed

 2 The scaleToX64 and scalefromX64 functions are inverses of
 each other.

 Echidna TOB-PT

 V-12

 3 The percentage functions are inverses of each other. Echidna TOB-PT

 V-6

 4 getCDF always returns output in the range of (0, 1) . Echidna TOB-PT

 V-13

 5 The delta between the error function defined in the white paper
 and the actual implementation is insignificant.

 Echidna Passed

 rmm-core end-to-end global system checks . The following properties ensure that the
 system's variables cannot be changed after deployment.

 Trail of Bits 11 Primitive Security Assessment
 PUBLIC

https://github.com/trailofbits/echidna
https://github.com/primitivefinance/rmm-core/blob/tob-echidna/contracts/crytic/LibraryMathEchidna.sol
https://github.com/primitivefinance/rmm-core/blob/tob-echidna/contracts/crytic/E2E_Global.sol

 ID Property Tool Result

 6 When the PrimitiveEngine contract is deployed, the
 PRECISION() constant is 10**18 .

 Echidna Passed

 7 When the PrimitiveEngine contract is deployed, the
 MIN_LIQUIDITY() constant is greater than zero.

 Echidna Passed

 8 When the PrimitiveEngine contract is deployed, the engine’s
 risky and stable tokens match.

 Echidna Passed

 9 The last updated timestamp on a PrimitiveEngine contract
 never exceeds the maturity of the pool.

 Echidna Passed

 10 The fee (gamma value) never exceeds 100%. Echidna Passed

 rmm-core end-to-end pool creation . The following properties ensure that the system
 behaves properly when users attempt to create pools.

 ID Property Tool Result

 11 Creating a pool through PrimitiveEngine with the correct
 preconditions never reverts.

 Echidna Passed

 12 Creating a pool through PrimitiveEngine with an out-of-range
 gamma always reverts.

 Echidna Passed

 13 Creating a pool through PrimitiveEngine saves a new
 calibration and liquidity allocation.

 Echidna Passed

 rmm-core end-to-end deposit and w ithdraw operations. The following properties
 ensure the system behaves properly when users deposit and withdraw into the engine.

 ID Property Tool Result

 14 Depositing into a pool through PrimitiveEngine with the
 correct preconditions never reverts.

 Echidna Passed

 Trail of Bits 12 Primitive Security Assessment
 PUBLIC

https://github.com/primitivefinance/rmm-core/blob/tob-echidna/contracts/crytic/E2E_Create.sol
https://github.com/primitivefinance/rmm-core/blob/tob-echidna/contracts/crytic/E2E_Deposit_Withdraw.sol

 15 Depositing into a pool with zero risky and zero stable balances
 always reverts.

 Echidna Passed

 16 Depositing into a pool always increases the margins for the
 supplied recipient by the deposited amount.

 Echidna Passed

 17 Depositing into a pool always decreases the caller’s token balance
 by the deposited amount.

 Echidna Passed

 18 The margin of the zero address is always zero. Echidna TOB-PT

 V-5

 19 Withdrawing from a pool through PrimitiveEngine with the
 correct preconditions always succeeds.

 Echidna Passed

 20 Withdrawing from a pool with zero risky and zero stable balances
 always reverts.

 Echidna Passed

 21 Withdrawing from a pool with the zero address as the recipient
 always reverts.

 Echidna Passed

 22 Withdrawing from a pool always results in the decrease of the
 withdrawn amount in the margins for the supplied recipient.

 Echidna Passed

 23 Withdrawing from a pool with insufficient margin balances
 reverts.

 Echidna Passed

 24 Depositing into a pool and immediately withdrawing from it
 results in identical margin balances.

 Echidna Passed

 25 Withdrawing from a pool never results in a change of recipient
 margin balance.

 Echidna Passed

 26 Withdrawing from a pool always increases the recipient’s token
 balance by the withdrawn amount.

 Echidna TOB-PT

 V-14

 rmm-core end-to-end allocate and remove operations. The following properties
 ensure that the system behaves properly when funds are allocated and removed from the
 system.

 Trail of Bits 13 Primitive Security Assessment
 PUBLIC

https://github.com/primitivefinance/rmm-core/blob/tob-echidna/contracts/crytic/E2E_Allocate_Remove.sol

 ID Property Tool Result

 27 Allocating funds to PrimitiveEngine with the correct
 preconditions never reverts.

 Echidna Passed

 28 Allocating funds from a margin with an insufficient balance to a
 pool always reverts.

 Echidna Passed

 29 Allocating funds from a margin to a pool always results in a
 decrease of the caller’s risky and stable margins.

 Echidna Passed

 30 Allocating funds that do not come from a margin to a pool never
 changes the margins.

 Echidna Passed

 31 Allocating funds to a pool always results in an increase in the
 reserves.

 Echidna Passed

 32 Allocating funds to an expired pool after maturity always reverts. Echidna Passed

 33 After allocating funds to a pool, calling the inverse of remove
 always succeeds.

 Echidna Passed

 34 Allocating funds to a pool never results in a decrease of liquidity. Echidna Passed

 35 Allocating funds to a pool always updates the reserve block’s
 timestamp.

 Echidna Passed

 36 Calling allocate and remove sequentially with an optimal value
 amount results in the same amount.

 Echidna TOB-PT

 V-11

 37 Removing funds from a pool with the correct preconditions never
 reverts.

 Echidna Passed

 38 Removing funds from a pool that has insufficient liquidity always
 reverts.

 Echidna Passed

 39 Removing funds from a pool that has insufficient risky or stable
 reserves always reverts.

 Echidna Passed

 Trail of Bits 14 Primitive Security Assessment
 PUBLIC

 40 Removing fewer funds than the total position amount in the
 engine never fails.

 Echidna Passed

 41 Removing funds from a pool results in an increase in margins. Echidna Passed

 42 Removing funds never leads to an increase in liquidity. Echidna Passed

 rmm-core end-to-end pool swaps . The following properties ensure that the system
 behaves properly when swaps are being executed.

 ID Property Tool Result

 43 The timestamp of the pool is updated after a swap. Echidna Passed

 44 The pool invariant always increases. Echidna Passed

 45 After a swap, the reserve balances for tokens accurately reflect
 the amount paid out.

 Echidna Passed

 rmm-manage r. The following properties check behavior in the rmm-manager directory.
 These properties require additional investigation and additional preconditions.

 ID Property Tool Result

 46 The block timestamp is updated after calls to allocate . Echidna WIP

 47 The block timestamp increases between timestamp calls. Echidna WIP

 48 Allocating to reserves always results in an increase of risky and
 stable amounts.

 Echidna WIP

 49 Allocating to reserves always results in an increase in liquidity. Echidna WIP

 50 Allocating from a margin through the manager always results in a
 decrease in margins.

 Echidna WIP

 Trail of Bits 15 Primitive Security Assessment
 PUBLIC

https://github.com/primitivefinance/rmm-core/blob/tob-echidna/contracts/crytic/E2E_Swap_Adjusted.sol
https://github.com/primitivefinance/rmm-core/blob/tob-echidna/contracts/crytic/E2E_Swap_Adjusted.sol

 51 Allocating funds that do not come from a margin through the
 manager never changes the margins.

 Echidna WIP

 52 Allocating funds always results in an increase in ERC1155 tokens
 of delLiquidity .

 Echidna WIP

 53 Removing funds from reserves always results in a decrease of
 liquidity.

 Echidna WIP

 54 Removing funds from reserves results in an update to the
 timestamp.

 Echidna WIP

 55 Removing funds from reserves always results in a decrease in
 reserveRisky and reserveStable .

 Echidna WIP

 56 Depositing funds into margins results in an increase in risky and
 stable margins.

 Echidna WIP

 57 Depositing zero risky and stable assets reverts. Echidna WIP

 Trail of Bits 16 Primitive Security Assessment
 PUBLIC

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic Solidity 0.8 with native overflow/underflow support is used
 throughout the system. The expected behavior and
 arithmetic of the system is well documented. Using
 Echidna, we identified certain functions whose inverse
 checks failed (TOB-PTV-6 , TOB-PTV-11 , TOB-PTV-12). We
 highly recommend ensuring that all documentation on
 parameter fine-tuning is up to date to match the current
 implementation.

 Moderate

 Auditing The Primitive codebase has sufficient events for
 monitoring the system. Primitive also mentioned the use a
 Discord bot for off-chain monitoring. We recommend
 creating a thorough incident response plan. Our
 recommendations for doing so are specified in appendix G .

 Moderate

 Authentication /
 Access Controls

 The privileged actors in the system are limited. Satisfactory

 Complexity
 Management

 The functions in the Primitive codebase are small and easy
 to understand. These functions are also well documented
 in the white paper and in-code. The use of callbacks in the
 system may occasionally hinder the ability to test functions
 in isolation. The lack of an on-chain
 getRiskyGivenStable calculation for swaps can also
 hinder testing.

 Moderate

 Cryptography
 and Key
 Management

 No components related to key management or
 cryptography were in scope for this review.

 Not
 Applicable

 Trail of Bits 17 Primitive Security Assessment
 PUBLIC

 Decentralization The Primitive smart contracts are not upgradeable. Strong

 Documentation Primitive provided very detailed documentation through
 the white paper, the documentation, and code comments.
 For many of these, the expected behavior matches the
 implementations, aside from certain out-of-date
 parameterized fine-tuning.

 Satisfactory

 Front-Running
 Resistance

 We recommend implementing historical mathematical
 analysis on the pools to identify front-running and
 arbitrage opportunities.

 Further
 Investigation
 Required

 Low-Level Calls The use of low-level calls in the system is limited. Where
 low-level calls are required, the consequences of using
 them are well documented in code comments.

 Satisfactory

 Testing and
 Verification

 The codebase contains adequate unit tests. However, it
 lacks end-to-end tests for the protocol’s integration with
 the Primitive manager. During the audit, we integrated
 more advanced testing methods, like fuzzing, to properly
 test the arithmetic.

 Moderate

 Trail of Bits 18 Primitive Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Transfer operations may silently fail due to the
 lack of contract existence checks

 Data Validation High

 2 Project dependencies contain vulnerabilities Patching Medium

 3 Anyone could steal pool tokens’ earned interest Timing Low

 4 Solidity compiler optimizations can be
 problematic

 Undefined
 Behavior

 Informational

 5 Lack of zero-value checks on functions Data Validation Informational

 6 uint256.percentage() and int256.percentage() are
 not inverses of each other

 Undefined
 Behavior

 Undetermined

 7 Users can allocate tokens to a pool at the moment
 the pool reaches maturity

 Timing Informational

 8 Possible front-running vulnerability during
 BUFFER time

 Timing Undetermined

 9 Inconsistency in allocate and remove functions Data Validation Informational

 10 Areas of the codebase that would benefit from
 additional documentation

 Data Validation Informational

 11 Allocate and remove are not exact inverses of
 each other

 Undefined
 Behavior

 Medium

 12 scaleToX64() and scalefromX64() are not inverses
 of each other

 Undefined
 Behavior

 Undetermined

 Trail of Bits 19 Primitive Security Assessment
 PUBLIC

 13 getCDF always returns output in the range of (0, 1) Undefined
 Behavior

 Undetermined

 14 Lack of data validation on withdrawal operations Data Validation Medium

 Trail of Bits 20 Primitive Security Assessment
 PUBLIC

 Detailed Findings

 1. Transfer operations may silently fail due to the lack of contract existence
 checks

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-PTV-1

 Target: rmm-core/contracts/libraries/Transfers.sol ,
 rmm-manager/contracts/libraries/TransferHelper.sol

 Description
 The pool fails to check that a contract exists before performing transfers. As a result, the
 pool may assume that failed transactions involving destroyed tokens or tokens that have
 not yet been deployed were successful.

 Transfers.safeTransfer , TransferHelper.safeTransfer , and
 TransferHelper.safeTransferFrom use low-level calls to perform transfers without
 confirming the contract’s existence:

) internal {

 (bool success , bytes memory returnData) = address (token).call(

 abi.encodeWithSelector(token.transfer.selector, to, value)

);

 require (success && (returnData.length == 0 || abi.decode(returnData, (bool))), "Transfer

 fail");

 }

 Figure 1.1: rmm-core/contracts/libraries/Transfers.sol#16-21

 The Solidity documentation includes the following warning:

 The low-level functions call, delegatecall and staticcall return true as their first return value if
 the account called is non-existent, as part of the design of the EVM. Account existence must be
 checked prior to calling if needed.

 Figure 1.2: The Solidity documentation details the necessity of executing existence checks before
 performing low-level calls.

 Trail of Bits 21 Primitive Security Assessment
 PUBLIC

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

 Therefore, if the tokens to be transferred have not yet been deployed or have been
 destroyed, safeTransfer and safeTransferFrom will return success even though the
 transfer was not executed.

 Exploit Scenario
 The pool contains two tokens: A and B. The A token has a bug, and the contract is
 destroyed. Bob is not aware of the issue and swaps 1,000 B tokens for A tokens. Bob
 successfully transfers 1,000 B tokens to the pool but does not receive any A tokens in
 return. As a result, Bob loses 1,000 B tokens.

 Recommendations
 Short term, implement a contract existence check before the low-level calls in
 Transfer.safeTransfer , TransferHelper.safeTransfer , and
 TransferHelper.safeTransferFrom . This will ensure that a swap will revert if the token
 to be bought no longer exists, preventing the pool from accepting the token to be sold
 without returning any tokens in exchange.

 Long term, avoid implementing low-level calls. If such calls are unavoidable, carefully
 review the Solidity documentation , particularly the “Warnings” section, before
 implementing them to ensure that they are implemented correctly.

 Trail of Bits 22 Primitive Security Assessment
 PUBLIC

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

 2. Project dependencies contain vulnerabilities

 Severity: Medium Difficulty: Low

 Type: Patching Finding ID: TOB-PTV-2

 Target: rmm-core , rmm-manager

 Description
 Although dependency scans did not indicate a direct threat to the project under review,
 yarn audit identified dependencies with known vulnerabilities. Due to the sensitivity of
 the deployment code and its environment, it is important to ensure dependencies are not
 malicious. Problems with dependencies in the JavaScript community could have a
 significant effect on the repositories under review. The output below details these issues.

 CVE ID Description Dependency

 CVE-2021-32819 Insecure template handling in
 Squirrelly

 squirrelly

 CVE-2021-23337 Command Injection in lodash lodash

 CVE-2021-23358 Arbitrary Code Execution in
 underscore

 underscore

 Figure 2.1: Advisories affecting rmm-core/rmm-manager dependencies

 Exploit Scenario
 Alice installs the dependencies of an in-scope repository on a clean machine. Unbeknownst
 to Alice, a dependency of the project has become malicious or exploitable. Alice uses the
 dependency, disclosing sensitive information to an unknown actor.

 Recommendations
 Short term, ensure dependencies are up to date. Several node modules have been
 documented as malicious because they execute malicious code when installing
 dependencies to projects. Keep modules current and verify their integrity after installation.

 Long term, consider integrating automated dependency auditing into the development
 workflow. If a dependency cannot be updated when a vulnerability is disclosed, ensure that
 the code does not use and is not affected by the vulnerable functionality of the
 dependency.

 Trail of Bits 23 Primitive Security Assessment
 PUBLIC

https://github.com/advisories/GHSA-q8j6-pwqx-pm96
https://github.com/advisories/GHSA-35jh-r3h4-6jhm
https://github.com/advisories/GHSA-cf4h-3jhx-xvhq

 3. Anyone could steal pool tokens’ earned interest

 Severity: Low Difficulty: Medium

 Type: Timing Finding ID: TOB-PTV-3

 Target: rmm-core/contracts/PrimitiveEngine.sol

 Description
 If a PrimitiveEngine contract is deployed with certain ERC20 tokens, unexpected token
 interest behavior could allow token interest to count toward the number of tokens
 required for the deposit , allocate , create , and swap functions, allowing the user to
 avoid paying in full.

 Liquidity providers use the deposit function to increase the liquidity in a position. The
 following code within the function verifies that the pool has received at least the minimum
 number of tokens required by the protocol:

 if (delRisky != 0) balRisky = balanceRisky();

 if (delStable != 0) balStable = balanceStable();

 IPrimitiveDepositCallback(msg.sender).depositCallback(delRisky, delStable, data); //

 agnostic payment

 if (delRisky != 0) checkRiskyBalance(balRisky + delRisky);

 if (delStable != 0) checkStableBalance(balStable + delStable);

 emit Deposit(msg.sender , recipient, delRisky, delStable);

 Figure 3.1: rmm-core/contracts/PrimitiveEngine.sol#213-217

 Assume that both delRisky and delStable are positive. First, the code fetches the
 current balances of the tokens. Next, the depositCallback function is called to transfer
 the required number of each token to the pool contract. Finally, the code verifies that each
 token’s balance has increased by at least the required amount.

 There could be a token that allows token holders to earn interest simply because they are
 token holders. To retrieve this interest, token holders could call a certain function to
 calculate the interest earned and increase their balances.

 An attacker could call this function from within the depositCallback function to pay out
 interest to the pool contract. This would increase the pool’s token balance, decreasing the
 number of tokens that the user needs to transfer to the pool contract to pass the balance
 check (i.e., the check confirming that the balance has sufficiently increased). In effect, the

 Trail of Bits 24 Primitive Security Assessment
 PUBLIC

 user’s token payment obligation is reduced because the interest accounts for part of the
 required balance increase.

 To date, we have not identified a token contract that contains such a functionality;
 however, it is possible that one exists or could be created.

 Exploit Scenario
 Bob deploys a PrimitiveEngine contract with token1 and token2. Token1 allows its
 holders to earn passive interest. Anyone can call get_interest(address) to make a
 certain token holder’s interest be claimed and added to the token holder’s balance. Over
 time, the pool can claim 1,000 tokens. Eve calls deposit , and the pool requires Eve to send
 1,000 tokens. Eve calls get_interest(address) in the depositCallback function
 instead of sending the tokens, depositing to the pool without paying the minimum required
 tokens.

 Recommendations
 Short term, add documentation explaining to users that the use of interest-earning tokens
 can reduce the standard payments for deposit , allocate , create , and swap .

 Long term, using the Token Integration Checklist (appendix C), generate a document
 detailing the shortcomings of tokens with certain features and the impacts of their use in
 the Primitive protocol. That way, users will not be alarmed if the use of a token with
 nonstandard features leads to unexpected results.

 Trail of Bits 25 Primitive Security Assessment
 PUBLIC

 4. Solidity compiler optimizations can be problematic

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-PTV-4

 Target: rmm-core/hardhat.config.ts , rmm-manager/hardhat-config.ts

 Description
 The Primitive contracts have enabled optional compiler optimizations in Solidity.

 There have been several optimization bugs with security implications. Moreover,
 optimizations are actively being developed . Solidity compiler optimizations are disabled by
 default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
 unclear how well they are being tested and exercised.

 High-severity security issues due to optimization bugs have occurred in the past . A
 high-severity bug in the emscripten -generated solc-js compiler used by Truffle and
 Remix persisted until late 2018. The fix for this bug was not reported in the Solidity
 CHANGELOG. Another high-severity optimization bug resulting in incorrect bit shift results
 was patched in Solidity 0.5.6 . More recently, another bug due to the incorrect caching of
 keccak256 was reported.

 A compiler audit of Solidity from November 2018 concluded that the optional optimizations
 may not be safe .

 It is likely that there are latent bugs related to optimization and that new bugs will be
 introduced due to future optimizations.

 Exploit Scenario
 A latent or future bug in Solidity compiler optimizations—or in the Emscripten transpilation
 to solc-js —causes a security vulnerability in the Primitive contracts.

 Recommendations
 Short term, measure the gas savings from optimizations and carefully weigh them against
 the possibility of an optimization-related bug.

 Long term, monitor the development and adoption of Solidity compiler optimizations to
 assess their maturity.

 Trail of Bits 26 Primitive Security Assessment
 PUBLIC

https://github.com/ethereum/solidity/pull/11093
https://solidity.readthedocs.io/en/v0.7.0/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://github.com/ethereum/solidity/releases/tag/v0.5.6
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.zeppelin.solutions/solidity-compiler-audit-8cfc0316a420
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

 5. Lack of zero-value checks on functions

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-PTV-5

 Target: Throughout the code

 Description
 Certain setter functions fail to validate incoming arguments, so callers can accidentally set
 important state variables to the zero address.

 function deposit(

 address recipient,

 uint256 delRisky,

 uint256 delStable,

 bytes calldata data

) external override lock {

 if (delRisky == 0 && delStable == 0) revert ZeroDeltasError();

 margins[recipient].deposit(delRisky, delStable); // state update

 uint256 balRisky;

 uint256 balStable;

 if (delRisky != 0) balRisky = balanceRisky();

 if (delStable != 0) balStable = balanceStable();

 IPrimitiveDepositCallback(msg.sender).depositCallback(delRisky, delStable, data); //

 agnostic payment

 if (delRisky != 0) checkRiskyBalance(balRisky + delRisky);

 if (delStable != 0) checkStableBalance(balStable + delStable);

 emit Deposit(msg.sender , recipient, delRisky, delStable);

 }

 Figure 5.1: rmm-core/contracts/PrimitiveEngine.sol#L201-L219

 Among others, the following functions lack zero-value checks on their arguments:

 ● PrimitiveEngine.deposit

 ● PrimitiveEngine.withdraw

 ● PrimitiveEngine.allocate

 ● PrimitiveEngine.swap

 Trail of Bits 27 Primitive Security Assessment
 PUBLIC

 ● PositionDescriptor.constructor

 ● MarginManager.deposit

 ● MarginManager.withdraw

 ● SwapManager.swap

 ● CashManager.unwrap

 ● CashManager.sweepToken

 Exploit Scenario
 Alice, a user, mistakenly provides the zero address as an argument when depositing for a
 recipient. As a result, her funds are saved in the margins of the zero address instead of a
 different address.

 Recommendations
 Short term, add zero-value checks for all function arguments to ensure that users cannot
 mistakenly set incorrect values, misconfiguring the system.

 Long term, use Slither, which will catch functions that do not have zero-value checks.

 Trail of Bits 28 Primitive Security Assessment
 PUBLIC

 6. uint256.percentage() and int256.percentage() are not inverses of each
 other

 Severity: Undetermined Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-PTV-6

 Target: rmm-core/contracts/libraries.Units.sol

 Description
 The Units library provides two percentage helper functions to convert unsigned integers
 to signed 64x64 fixed-point values, and vice versa. Due to rounding errors, these functions
 are not direct inverses of each other.

 /// @notice Converts denormalized percentage integer to a fixed point 64.64 number

 /// @dev Convert unsigned 256-bit integer number into signed 64.64 fixed point

 number

 /// @param denorm Unsigned percentage integer with precision of 1e4

 /// @return Signed 64.64 fixed point percentage with precision of 1e4

 function percentage(uint256 denorm) internal pure returns (int128) {

 return denorm. divu (PERCENTAGE);

 }

 /// @notice Converts signed 64.64 fixed point percentage to a denormalized percetage

 integer

 /// @param denorm Signed 64.64 fixed point percentage

 /// @return Unsigned percentage denormalized with precision of 1e4

 function percentage(int128 denorm) internal pure returns (uint256) {

 return denorm. mulu (PERCENTAGE);

 }

 Figure 6.1: rmm-core/contracts/libraries/Units.sol#L53-L66

 These two functions use ABDKMath64x64.divu() and ABDKMath64x64.mulu() , which
 both round downward toward zero. As a result, if a uint256 value is converted to a signed
 64x64 fixed point and then converted back to a uint256 value, the result will not equal the
 original uint256 value:

 function scalePercentages (uint256 value) public {

 require(value > Units.PERCENTAGE);

 int128 signedPercentage = value.percentage();

 uint256 unsignedPercentage = signedPercentage.percentage();

 Trail of Bits 29 Primitive Security Assessment
 PUBLIC

 if(unsignedPercentage != value) {

 emit AssertionFailed("scalePercentages" , signedPercentage,

 unsignedPercentage);

 assert(false);

 }

 Figure 6.2: rmm-core/contracts/LibraryMathEchidna.sol#L48-L57

 Trail of Bits used Echidna to determine this property violation:

 Analyzing contract: /rmm-core/contracts/LibraryMathEchidna.sol:LibraryMathEchidna

 scalePercentages(uint256): failed!💥

 Call sequence:

 scalePercentages(10006)

 Event sequence: Panic(1), AssertionFailed("scalePercentages", 18457812120153777346, 10005)

 Figure 6.3: Echidna results

 Exploit Scenario
 1. uint256.percentage() – 10006.percentage() = 1.0006 , which truncates

 down to 1.

 2. int128.percentage() – 1.percentage() = 10000 .

 3. The assertion fails because 10006 != 10000 .

 Recommendations
 Short term, either remove the int128.percentage() function if it is unused in the
 system or ensure that the percentages round in the correct direction to minimize rounding
 errors.

 Long term, use Echidna to test system and mathematical invariants.

 Trail of Bits 30 Primitive Security Assessment
 PUBLIC

 7. Users can allocate tokens to a pool at the moment the pool reaches
 maturity

 Severity: Informational Difficulty: High

 Type: Timing Finding ID: TOB-PTV-7

 Target: rmm-core/contracts/PrimitiveEngine.sol

 Description
 Users can allocate tokens to a pool at the moment the pool reaches maturity, which
 creates an opportunity for attackers to front-run or update the curve right before the
 maturity period ends.

 function allocate (

 bytes32 poolId ,

 address recipient ,

 uint256 delRisky ,

 uint256 delStable ,

 bool fromMargin ,

 bytes calldata data

) external override lock returns (uint256 delLiquidity) {

 if (delRisky == 0 || delStable == 0) revert ZeroDeltasError();

 Reserve.Data storage reserve = reserves[poolId];

 if (reserve.blockTimestamp == 0) revert UninitializedError();

 uint32 timestamp = _blockTimestamp();

 if (timestamp > calibrations[poolId].maturity) revert PoolExpiredError();

 uint256 liquidity0 = (delRisky * reserve.liquidity) / uint256 (reserve.reserveRisky);

 uint256 liquidity1 = (delStable * reserve.liquidity) / uint256 (reserve.reserveStable);

 delLiquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;

 if (delLiquidity == 0) revert ZeroLiquidityError();

 liquidity[recipient][poolId] += delLiquidity; // increase position liquidity

 reserve.allocate(delRisky, delStable, delLiquidity, timestamp); // increase reserves and

 liquidity

 if (fromMargin) {

 margins.withdraw(delRisky, delStable); // removes tokens from `msg.sender` margin

 account

 } else {

 (uint256 balRisky , uint256 balStable) = (balanceRisky(), balanceStable());

 IPrimitiveLiquidityCallback(msg.sender).allocateCallback(delRisky, delStable, data);

 // agnostic payment

 Trail of Bits 31 Primitive Security Assessment
 PUBLIC

 checkRiskyBalance(balRisky + delRisky);

 checkStableBalance(balStable + delStable);

 }

 emit Allocate(msg.sender , recipient, poolId, delRisky, delStable);

 }

 Figure 7.1: rmm-core/contracts/PrimitiveEngine.sol#L236-L268

 Recommendations
 Short term, document the expected behavior of transactions to allocate funds into a pool
 that has just reached maturity and analyze the front-running risk.

 Long term, analyze all front-running risks on all transactions in the system.

 Trail of Bits 32 Primitive Security Assessment
 PUBLIC

 8. Possible front-running vulnerability during BUFFER time

 Severity: Undetermined Difficulty: Undetermined

 Type: Timing Finding ID: TOB-PTV-8

 Target: rmm-core/contracts/PrimitiveEngine.sol

 Description
 The PrimitiveEngine.swap function permits swap transactions until 120 seconds after
 maturity, which could enable miners to front-run swap transactions and engage in
 malicious behavior. The constant tau value may allow miners to profit from front-running
 transactions when the swap curve is locked after maturity.

 SwapDetails memory details = SwapDetails({

 recipient: recipient,

 poolId: poolId,

 deltaIn: deltaIn,

 deltaOut: deltaOut,

 riskyForStable: riskyForStable,

 fromMargin: fromMargin,

 toMargin: toMargin,

 timestamp: _blockTimestamp()

 });

 uint32 lastTimestamp = _updateLastTimestamp(details.poolId); // updates lastTimestamp of

 ̀poolId`

 if (details.timestamp > lastTimestamp + BUFFER) revert PoolExpiredError(); // 120s buffer to

 allow final swaps

 Figure 8.1: rmm-core/contracts/PrimitiveEngine.sol#L314-L326

 Recommendations
 Short term, perform an off-chain analysis on the curve and the swaps to determine the
 impact of a front-running attack on these transactions.

 Long term, perform an additional economic analysis with historical data on pools to
 determine the impact of front-running attacks on all functionality in the system.

 Trail of Bits 33 Primitive Security Assessment
 PUBLIC

 9. Inconsistency in allocate and remove functions

 Severity: Informational Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-PTV-9

 Target: rmm-core/contracts/PrimitiveEngine.sol

 Description
 The allocate and remove functions do not have the same interface, as one would expect.
 The allocate function allows users to set the recipient of the allocated liquidity and
 choose whether the funds will be taken from the margins or sent directly. The remove
 function unallocates the liquidity from the pool and sends the tokens to the msg.sender ;
 with this function, users cannot set the recipient of the tokens or choose whether the
 tokens will be credited to their margins for future use or directly sent back to them.

 function allocate (

 bytes32 poolId ,

 address recipient ,

 uint256 delRisky ,

 uint256 delStable ,

 bool fromMargin ,

 bytes calldata data

) external override lock returns (uint256 delLiquidity) {

 if (delRisky == 0 || delStable == 0) revert ZeroDeltasError();

 Reserve.Data storage reserve = reserves[poolId];

 if (reserve.blockTimestamp == 0) revert UninitializedError();

 uint32 timestamp = _blockTimestamp();

 if (timestamp > calibrations[poolId].maturity) revert PoolExpiredError();

 uint256 liquidity0 = (delRisky * reserve.liquidity) / uint256 (reserve.reserveRisky);

 uint256 liquidity1 = (delStable * reserve.liquidity) / uint256 (reserve.reserveStable);

 delLiquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;

 if (delLiquidity == 0) revert ZeroLiquidityError();

 liquidity[recipient][poolId] += delLiquidity; // increase position liquidity

 reserve.allocate(delRisky, delStable, delLiquidity, timestamp); // increase reserves and

 liquidity

 if (fromMargin) {

 margins.withdraw(delRisky, delStable); // removes tokens from `msg.sender` margin

 account

 } else {

 Trail of Bits 34 Primitive Security Assessment
 PUBLIC

 (uint256 balRisky , uint256 balStable) = (balanceRisky(), balanceStable());

 IPrimitiveLiquidityCallback(msg.sender).allocateCallback(delRisky, delStable, data);

 // agnostic payment

 checkRiskyBalance(balRisky + delRisky);

 checkStableBalance(balStable + delStable);

 }

 emit Allocate(msg.sender , recipient, poolId, delRisky, delStable);

 }

 Figure 9.1: rmm-core/contracts/PrimitiveEngine.sol#L236-L268

 Recommendations
 Short term, either document the design decision or add the logic to the remove function
 allowing users to set the recipient and to choose whether the tokens should be credited to
 their margins .

 Long term, make sure to document design decisions and the rationale behind them,
 especially for behavior that may not be obvious.

 Trail of Bits 35 Primitive Security Assessment
 PUBLIC

 10. Areas of the codebase that are inconsistent with the documentation

 Severity: Informational Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-PTV-10

 Target: rmm-core/contracts/PrimitiveEngine.sol

 Description
 The Primitive codebase contains clear documentation and mathematical analysis denoting
 the intended behavior of the system. However, we identified certain areas in which the
 implementation does not match the white paper, including the following:

 ● Expected range for the gamma value of a pool. The white paper defines 10,000
 as 100% in the smart contract; however, the contract checks that the provided
 gamma is between 9,000 (inclusive) and 10,000 (exclusive); if it is not within this
 range, the pool reverts with a GammaError .

 The white paper should be updated to reflect the behavior of the code in these areas.

 Recommendations
 Short term, review and properly document all areas of the codebase with this gamma
 range check.

 Long term, ensure that the formal specification matches the expected behavior of the
 protocol.

 Trail of Bits 36 Primitive Security Assessment
 PUBLIC

 11. Allocate and remove are not exact inverses of each other

 Severity: Medium Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-PTV-11

 Target: rmm-core/contracts/libraries/Reserve.sol

 Description
 Due to the rounding logic used in the codebase, when users allocate funds into a system,
 they may not receive the same amount back when they remove them.

 When funds are allocated into a system, the values are rounded down (through native
 truncation) when they are added to the reserves:

 /// @notice Add to both reserves and total supply of liquidity

 /// @param reserve Reserve storage to manipulate

 /// @param delRisky Amount of risky tokens to add to the reserve

 /// @param delStable Amount of stable tokens to add to the reserve

 /// @param delLiquidity Amount of liquidity created with the provided tokens

 /// @param blockTimestamp Timestamp used to update cumulative reserves

 function allocate (

 Data storage reserve,

 uint256 delRisky ,

 uint256 delStable ,

 uint256 delLiquidity ,

 uint32 blockTimestamp

) internal {

 update(reserve, blockTimestamp);

 reserve.reserveRisky += delRisky.toUint128();

 reserve.reserveStable += delStable.toUint128();

 reserve.liquidity += delLiquidity.toUint128();

 }

 Figure 11.1: rmm-core/contracts/libraries/Reserve.sol#L70-L87

 When funds are removed from the reserves, they are similarly truncated:

 /// @notice Remove from both reserves and total supply of liquidity

 /// @param reserve Reserve storage to manipulate

 /// @param delRisky Amount of risky tokens to remove to the reserve

 /// @param delStable Amount of stable tokens to remove to the reserve

 /// @param delLiquidity Amount of liquidity removed from total supply

 /// @param blockTimestamp Timestamp used to update cumulative reserves

 Trail of Bits 37 Primitive Security Assessment
 PUBLIC

 function remove(

 Data storage reserve,

 uint256 delRisky,

 uint256 delStable,

 uint256 delLiquidity,

 uint32 blockTimestamp

) internal {

 update(reserve, blockTimestamp);

 reserve.reserveRisky -= delRisky.toUint128();

 reserve.reserveStable -= delStable.toUint128();

 reserve.liquidity -= delLiquidity.toUint128();

 }

 Figure 11.2: rmm-core/contracts/libraries/Reserve.sol#L89-L106

 We used the following Echidna property to test this behavior:

 function check_allocate_remove_inverses(

 uint256 randomId,

 uint256 intendedLiquidity,

 bool fromMargin

) public {

 AllocateCall memory allocate;

 allocate.poolId = Addresses.retrieve_created_pool(randomId);

 retrieve_current_pool_data(allocate.poolId, true);

 intendedLiquidity = E2E_Helper.one_to_max_uint64(intendedLiquidity);

 allocate.delRisky = (intendedLiquidity * precall.reserve.reserveRisky) /

 precall.reserve.liquidity;

 allocate.delStable = (intendedLiquidity * precall.reserve.reserveStable) /

 precall.reserve.liquidity;

 uint256 delLiquidity = allocate_helper(allocate);

 // these are calculated the amount returned when remove is called

 (uint256 removeRisky, uint256 removeStable) = remove_should_succeed(allocate.poolId,

 delLiquidity);

 emit AllocateRemoveDifference(allocate.delRisky, removeRisky);

 emit AllocateRemoveDifference(allocate.delStable, removeStable);

 assert (allocate.delRisky == removeRisky);

 assert (allocate.delStable == removeStable);

 assert (intendedLiquidity == delLiquidity);

 }

 Figure 11.3: rmm-core/contracts/libraries/Reserve.sol#L89-L106

 Trail of Bits 38 Primitive Security Assessment
 PUBLIC

 In considering this rounding logic, we used Echidna to calculate the most optimal
 allocate value for an amount of liquidity, which resulted 1,920,041,647,503 as the
 difference in the amount allocated and the amount removed.

 check_allocate_remove_inverses(uint256,uint256,bool): failed!💥

 Call sequence:

 create_new_pool_should_not_revert(113263940847354084267525170308314,0,12,58,414705177,292070

 35433870938731770491094459037949100611312053389816037169023399245174) from:

 0x0000000000000000000000000000000000020000 Gas: 0xbebc20

 check_allocate_remove_inverses(513288669432172152578276403318402760987129411133329015270396,

 675391606931488162786753316903883654910567233327356334685,false) from:

 0x1E2F9E10D02a6b8F8f69fcBf515e75039D2EA30d

 Event sequence: Panic(1), Transfer(6361150874), Transfer(64302260917206574294870),

 AllocateMarginBalance(0, 0, 6361150874, 64302260917206574294870), Transfer(6361150874),

 Transfer(64302260917206574294870), Allocate(6361150874, 64302260917206574294870),

 Remove(6361150873, 64302260915286532647367), AllocateRemoveDifference(6361150874,

 6361150873), AllocateRemoveDifference(64302260917206574294870, 64302260915286532647367)

 Figure 11.4: Echidna results

 Exploit Scenario
 Alice, a Primitive user, determines a specific amount of liquidity that she wants to put into
 the system. She calculates the required risky and stable tokens to make the trade, and then
 allocates the funds to the pool. Due to the rounding direction in the allocate operation
 and the pool, she receives less than she expected after removing her liquidity.

 Recommendations
 Short term, perform additional analysis to determine a safe delta value to allow the
 allocate and remove operations to happen. Document this issue for end users to ensure
 that they are aware of the rounding behavior.

 Long term, use Echidna to test system and mathematical invariants.

 Trail of Bits 39 Primitive Security Assessment
 PUBLIC

 12. scaleToX64() and scalefromX64() are not inverses of each other

 Severity: Undetermined Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-PTV-12

 Target: rmm-core/contracts/libraries/Units.sol

 Description
 The Units library provides the scaleToX64() and scalefromX64() helper functions to
 convert unsigned integers to signed 64x64 fixed-point values, and vice versa. Due to
 rounding errors, these functions are not direct inverses of each other.

 /// @notice Converts unsigned 256-bit wei value into a fixed point 64.64 number

 /// @param value Unsigned 256-bit wei amount, in native precision

 /// @param factor Scaling factor for `value`, used to calculate decimals of `value`

 /// @return y Signed 64.64 fixed point number scaled from native precision

 function scaleToX64 (uint256 value , uint256 factor) internal pure returns (int128 y) {

 uint256 scaleFactor = PRECISION / factor;

 y = value.divu(scaleFactor);

 }

 Figure 12.1: rmm-core/contracts/libraries/Units.sol#L35-L42

 These two functions use ABDKMath64x64.divu() and ABDKMath64x64.mulu() , which
 both round downward toward zero. As a result, if a uint256 value is converted to a signed
 64x64 fixed point and then converted back to a uint256 value, the result will not equal the
 original uint256 value:

 /// @notice Converts signed fixed point 64.64 number into unsigned 256-bit wei

 value

 /// @param value Signed fixed point 64.64 number to convert from precision of 10^18

 /// @param factor Scaling factor for `value`, used to calculate decimals of `value`

 /// @return y Unsigned 256-bit wei amount scaled to native precision of 10^(18 -

 factor)

 function scalefromX64 (int128 value , uint256 factor) internal pure returns (uint256 y) {

 uint256 scaleFactor = PRECISION / factor;

 y = value.mulu(scaleFactor);

 }

 Figure 12.2: rmm-core/contracts/libraries/Units.sol#L44-L51

 We used the following Echidna property to test this behavior:

 Trail of Bits 40 Primitive Security Assessment
 PUBLIC

 function scaleToAndFromX64Inverses (uint256 value , uint256 _decimals) public {

 // will enforce factor between 0 - 12

 uint256 factor = _decimals % (13);

 // will enforce scaledFactor between 1 - 10**12 , because 10**0 = 1

 uint256 scaledFactor = 10 **factor;

 int128 scaledUpValue = value.scaleToX64(scaledFactor);

 uint256 scaledDownValue = scaledUpValue.scalefromX64(scaledFactor);

 assert(scaledDownValue == value);

 }

 Figure 12.3: contracts/crytic/LibraryMathEchidna.sol

 scaleToAndFromX64Inverses(uint256,uint256): failed!💥

 Call sequence:

 scaleToAndFromX64Inverses(1,0)

 Event sequence: Panic(1)

 Figure 12.4: Echidna results

 Recommendations
 Short term, ensure that the percentages round in the correct direction to minimize
 rounding errors.

 Long term, use Echidna to test system and mathematical invariants.

 Trail of Bits 41 Primitive Security Assessment
 PUBLIC

 13. getCDF always returns output in the range of (0, 1)

 Severity: Undetermined Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-PTV-13

 Target: rmm-core/contracts/libraries/CumulativeNormalDistribution.sol

 Description
 CumulativeNormalDistribution provides the getCDF function to calculate an
 approximation of the cumulative distribution function, which should result in (0, 1] ;
 however, the getCDF function could return 1 .

 /// @notice Uses Abramowitz and Stegun approximation:

 /// https://en.wikipedia.org/wiki/Abramowitz_and_Stegun

 /// @dev Maximum error: 3.15x10-3

 /// @return Standard Normal Cumulative Distribution Function of `x`

 function getCDF(int128 x) internal pure returns (int128) {

 int128 z = x.div(CDF3);

 int128 t = ONE_INT.div(ONE_INT.add(CDF0.mul(z.abs())));

 int128 erf = getErrorFunction(z, t);

 if (z < 0) {

 erf = erf.neg();

 }

 int128 result = (HALF_INT).mul(ONE_INT.add(erf));

 return result;

 }

 Figure 13.1:
 rmm-core/contracts/libraries/CumulativeNormalDistribution.sol#L24-L37

 We used the following Echidna property to test this behavior.

 function CDFCheckRange(uint128 x, uint128 neg) public {

 int128 x_x = realisticCDFInput(x, neg);

 int128 res = x_x.getCDF();

 emit P(x_x, res, res.toInt());

 assert (res > 0 && res.toInt() < 1);

 }

 Figure 13.2: rmm-core/contracts/LibraryMathEchidna.sol

 CDFCheckRange(uint128,uint128): failed!💥

 Trail of Bits 42 Primitive Security Assessment
 PUBLIC

 Call sequence:

 CDFCheckRange(168951622815827493037,1486973755574663235619590266651)

 Event sequence: Panic(1), P(168951622815827493037, 18446744073709551616, 1)

 Figure 13.3: Echidna results

 Recommendations
 Short term, perform additional analysis to determine whether this behavior is an issue for
 the system.

 Long term, use Echidna to test system and mathematical invariants.

 Trail of Bits 43 Primitive Security Assessment
 PUBLIC

 14. Lack of data validation on withdrawal operations

 Severity: Medium Difficulty: Low

 Type: Data Validation Finding ID: TOB-PTV-13

 Target: rmm-core/contracts/PrimitiveEngine.sol

 Description
 The withdraw function allows users to specify the recipient to send funds to. Due to a lack
 of data validation, the address of the engine could be set as the recipient. As a result, the
 tokens will be transferred directly to the engine itself.

 /// @inheritdoc IPrimitiveEngineActions

 function withdraw (

 address recipient ,

 uint256 delRisky ,

 uint256 delStable

) external override lock {

 if (delRisky == 0 && delStable == 0) revert ZeroDeltasError();

 margins.withdraw(delRisky, delStable); // state update

 if (delRisky != 0) IERC20(risky).safeTransfer(recipient, delRisky);

 if (delStable != 0) IERC20(stable).safeTransfer(recipient, delStable);

 emit Withdraw(msg.sender , recipient, delRisky, delStable);

 }

 Figure 14.1: rmm-core/contracts/PrimitiveEngine.sol#L221-L232

 We used the following Echidna property to test this behavior.

 function withdraw_with_only_non_zero_addr(

 address recipient,

 uint256 delRisky,

 uint256 delStable

) public {

 require (recipient != address (0));

 //ensures that delRisky and delStable are at least 1 and not too large to overflow the

 deposit

 delRisky = E2E_Helper.one_to_max_uint64(delRisky);

 delStable = E2E_Helper.one_to_max_uint64(delStable);

 MarginHelper memory senderMargins = populate_margin_helper(address (this));

 if (senderMargins.marginRisky < delRisky || senderMargins.marginStable < delStable) {

 withdraw_should_revert(recipient, delRisky, delStable);

 } else {

 Trail of Bits 44 Primitive Security Assessment
 PUBLIC

 withdraw_should_succeed(recipient, delRisky, delStable);

 }

 }

 function withdraw_should_succeed (

 address recipient ,

 uint256 delRisky ,

 uint256 delStable

) internal {

 MarginHelper memory precallSender = populate_margin_helper(address (this));

 MarginHelper memory precallRecipient = populate_margin_helper(recipient);

 uint256 balanceRecipientRiskyBefore = risky.balanceOf(recipient);

 uint256 balanceRecipientStableBefore = stable.balanceOf(recipient);

 uint256 balanceEngineRiskyBefore = risky.balanceOf(address (engine));

 uint256 balanceEngineStableBefore = stable.balanceOf(address (engine));

 (bool success ,) = address (engine).call(

 abi.encodeWithSignature("withdraw(address,uint256,uint256)" , recipient, delRisky,

 delStable)

);

 if (!success) {

 assert(false);

 return ;

 }

 {

 assert_post_withdrawal(precallSender, precallRecipient, recipient, delRisky,

 delStable);

 //check token balances

 uint256 balanceRecipientRiskyAfter = risky.balanceOf(recipient);

 uint256 balanceRecipientStableAfter = stable.balanceOf(recipient);

 uint256 balanceEngineRiskyAfter = risky.balanceOf(address (engine));

 uint256 balanceEngineStableAfter = stable.balanceOf(address (engine));

 emit DepositWithdraw("balance recip risky" , balanceRecipientRiskyBefore,

 balanceRecipientRiskyAfter, delRisky);

 emit DepositWithdraw("balance recip stable" , balanceRecipientStableBefore,

 balanceRecipientStableAfter, delStable);

 emit DepositWithdraw("balance engine risky" , balanceEngineRiskyBefore,

 balanceEngineRiskyAfter, delRisky);

 emit DepositWithdraw("balance engine stable" , balanceEngineStableBefore,

 balanceEngineStableAfter, delStable);

 assert(balanceRecipientRiskyAfter == balanceRecipientRiskyBefore + delRisky);

 assert(balanceRecipientStableAfter == balanceRecipientStableBefore + delStable);

 assert(balanceEngineRiskyAfter == balanceEngineRiskyBefore - delRisky);

 assert(balanceEngineStableAfter == balanceEngineStableBefore - delStable);

 }

 }

 Figure 14.2: rmm-core/contracts/crytic/E2E_Deposit_Withdrawal.sol

 Trail of Bits 45 Primitive Security Assessment
 PUBLIC

 withdraw_with_safe_range(address,uint256,uint256): failed!💥

 Call sequence:

 deposit_with_safe_range(0xa329c0648769a73afac7f9381e08fb43dbea72,115792089237316195423570985

 008687907853269984665640564039447584007913129639937,5964323976539599410180707317759394870432

 1625682232592596462650205581096120955) from: 0x1E2F9E10D02a6b8F8f69fcBf515e75039D2EA30d

 withdraw_with_safe_range(0x48bacb9266a570d521063ef5dd96e61686dbe788,5248038478797710845,748)

 from: 0x6A4A62E5A7eD13c361b176A5F62C2eE620Ac0DF8

 Event sequence: Panic(1), Transfer(5248038478797710846), Transfer(749),

 Withdraw(5248038478797710846, 749), DepositWithdraw("sender risky", 8446744073709551632,

 3198705594911840786, 5248038478797710846), DepositWithdraw("sender stable",

 15594018607531992466, 15594018607531991717, 749), DepositWithdraw("balance recip risky",

 8446744073709551632, 8446744073709551632, 5248038478797710846), DepositWithdraw("balance

 recip stable", 15594018607531992466, 15594018607531992466, 749), DepositWithdraw("balance

 engine risky", 8446744073709551632, 8446744073709551632, 5248038478797710846),

 DepositWithdraw("balance engine stable", 15594018607531992466, 15594018607531992466, 749)

 Figure 14.3: Echidna results

 Exploit Scenario
 Alice, a user, withdraws her funds from the Primitive engine. She accidentally specifies the
 address of the recipient as the engine address, and her funds are left stuck in the contract.

 Recommendations
 Short term, add a check to ensure that users cannot withdraw to the engine address
 directly to ensure that users are protected from these mistakes.

 Long term, use Echidna to test system and mathematical invariants.

 Trail of Bits 46 Primitive Security Assessment
 PUBLIC

 Summary of Recommendations

 The Primitive codebase is a work in progress with multiple planned iterations. Trail of Bits
 recommends that Primitive address the findings detailed in this report and take the
 following additional steps prior to deployment:

 ● Integrate Slither into a continuous integration pipeline to detect common issues.

 ● Continue extending the fuzzing tests to ensure the correctness of the arithmetic
 operations. In all cases in which rounding is used, ensure that the code always
 rounds in a direction that is favorable to the pool. Our recommendations for
 additional properties are highlighted in appendix F .

 ● Develop a detailed incident response plan to ensure that any issues that arise can
 be addressed promptly and without confusion.

 Trail of Bits 47 Primitive Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 48 Primitive Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 49 Primitive Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Decentralization The presence of a decentralized governance structure for mitigating
 insider threats and managing risks posed by contract upgrades

 Documentation The presence of comprehensive and readable codebase documentation

 Front-Running
 Resistance

 The system’s resistance to front-running attacks

 Low-Level Calls The justified use of inline assembly and low-level calls

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Trail of Bits 50 Primitive Security Assessment
 PUBLIC

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 51 Primitive Security Assessment
 PUBLIC

 C. Token Integration Checklist

 The following checklist provides recommendations for interactions with arbitrary tokens.
 Every unchecked item should be justified, and its associated risks, understood. An
 up-to-date version of the checklist can be found in
 crytic/building-secure-contracts .

 For convenience, all Slither utilities can be run directly on a token address, such as the
 following:

 slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken

 To follow this checklist, use the below output from Slither for the token:

 - slither-check-erc [target] [contractName] [optional: --erc ERC_NUMBER]
 - slither [target] --print human-summary
 - slither [target] --print contract-summary
 - slither-prop . --contract ContractName # requires configuration, and use of
 Echidna and Manticore

 General Security Considerations
 ❏ The contract has a security review. Avoid interacting with contracts that lack a

 security review. Check the length of the assessment (i.e., the level of effort), the
 reputation of the security firm, and the number and severity of the findings.

 ❏ You have contacted the developers. You may need to alert their team to an
 incident. Look for appropriate contacts on blockchain-security-contacts .

 ❏ They have a security mailing list for critical announcements. Their team should
 advise users (like you!) when critical issues are found or when upgrades occur.

 ERC Conformity
 Slither includes a utility, slither-check-erc , that reviews the conformance of a token to
 many related ERC standards. Use slither-check-erc to review the following:

 ❏ Transfer and transferFrom return a boolean. Several tokens do not return a
 boolean on these functions. As a result, their calls in the contract might fail.

 ❏ The name , decimals , and symbol functions are present if used. These functions
 are optional in the ERC20 standard and may not be present.

 ❏ Decimals returns a uint8 . Several tokens incorrectly return a uint256 . In such

 Trail of Bits 52 Primitive Security Assessment
 PUBLIC

https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md
https://github.com/crytic/slither
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/ERC-Conformance

 cases, ensure that the value returned is below 255.

 ❏ The token mitigates the known ERC20 race condition . The ERC20 standard has a
 known ERC20 race condition that must be mitigated to prevent attackers from
 stealing tokens.

 ❏ The token is not an ERC777 token and has no external function call in
 transfer or transferFrom . External calls in the transfer functions can lead to
 reentrancies.

 Slither includes a utility, slither-prop , that generates unit tests and security properties
 that can discover many common ERC flaws. Use slither-prop to review the following:

 ❏ The contract passes all unit tests and security properties from slither-prop .
 Run the generated unit tests and then check the properties with Echidna and
 Manticore .

 Finally, there are certain characteristics that are difficult to identify automatically. Conduct
 a manual review of the following conditions:

 ❏ Transfer and transferFrom should not take a fee. Deflationary tokens can lead
 to unexpected behavior.

 ❏ Potential interest earned from the token is taken into account. Some tokens
 distribute interest to token holders. This interest may be trapped in the contract if
 not taken into account.

 Contract Composition
 ❏ The contract avoids unnecessary complexity. The token should be a simple

 contract; a token with complex code requires a higher standard of review. Use
 Slither’s human-summary printer to identify complex code.

 ❏ The contract uses SafeMath . Contracts that do not use SafeMath require a higher
 standard of review. Inspect the contract by hand for SafeMath usage.

 ❏ The contract has only a few non-token-related functions. Non-token-related
 functions increase the likelihood of an issue in the contract. Use Slither’s
 contract-summary printer to broadly review the code used in the contract.

 ❏ The token has only one address. Tokens with multiple entry points for balance
 updates can break internal bookkeeping based on the address (e.g.,
 balances[token_address][msg.sender] may not reflect the actual balance).

 Trail of Bits 53 Primitive Security Assessment
 PUBLIC

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation
https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary

 Owner Privileges
 ❏ The token is not upgradeable. Upgradeable contracts may change their rules over

 time. Use Slither’s human-summary printer to determine if the contract is
 upgradeable.

 ❏ The owner has limited minting capabilities. Malicious or compromised owners
 can abuse minting capabilities. Use Slither’s human-summary printer to review
 minting capabilities, and consider manually reviewing the code.

 ❏ The token is not pausable. Malicious or compromised owners can trap contracts
 relying on pausable tokens. Identify pausable code by hand.

 ❏ The owner cannot blacklist the contract. Malicious or compromised owners can
 trap contracts relying on tokens with a blacklist. Identify blacklisting features by
 hand.

 ❏ The team behind the token is known and can be held responsible for abuse.
 Contracts with anonymous development teams or teams that reside in legal shelters
 require a higher standard of review.

 Token Scarcity
 Reviews of token scarcity issues must be executed manually. Check for the following
 conditions:

 ❏ The supply is owned by more than a few users. If a few users own most of the
 tokens, they can influence operations based on the tokens’ repartition.

 ❏ The total supply is sufficient. Tokens with a low total supply can be easily
 manipulated.

 ❏ The tokens are located in more than a few exchanges. If all the tokens are in one
 exchange, a compromise of the exchange could compromise the contract relying on
 the token.

 ❏ Users understand the risks associated with a large amount of funds or flash
 loans. Contracts relying on the token balance must account for attackers with a
 large amount of funds or attacks executed through flash loans.

 ❏ The token does not allow flash minting. Flash minting can lead to substantial
 swings in the balance and the total supply, which necessitate strict and
 comprehensive overflow checks in the operation of the token.

 Trail of Bits 54 Primitive Security Assessment
 PUBLIC

https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary

 D. Fixed-Point Rounding Recommendations

 Primitive uses fixed-point arithmetic throughout the system. This strategy requires that
 numbers round up or down, which may lead to dust that is beneficial for an attacker. While
 we are still investigating the assumptions of these deviations, we offer some
 recommendations on the expected rounding direction of these values.

 Determining Rounding Direction
 To determine how to apply rounding (whether up or down), consider the result of the
 expected output.

 For example, the formula for a swap of token x for token y calculates how much of token x
 must be sent to the contract to receive y.

 𝑦 ' = 𝐾 ϕ(ϕ− 1 (1 − 𝑥 + γ∆)) − σ τ) + 𝑘

 In order to benefit the pool, y’ must tend toward a lower value () to minimize the amount ↘
 paid out. As a result, the following should hold:

 ● must round 𝐾 ϕ(ϕ− 1 (1 − 𝑥 + γ∆)) ↘
 ● must round σ τ ↗

 ○ σ ↗ τ ↗
 ● must round 𝑘 ↘

 Therefore, the mathematics in the formula should perform this check:

 𝑦 '↘ = 𝐾 ↘ ϕ ↘ (ϕ− 1 (1 − 𝑥 + γ∆) ↘) − σ ↗ τ ↗) + 𝑘 ↘

 Similar rounding techniques can be applied in all the system’s formulas to ensure that
 rounding always occurs in the direction that benefits Primitive.

 (1-x) Rounding
 Several operations require the system to compute . The following describes the (1 − 𝑥)
 rules to apply the rounding:

 ● ↗ requires ↘ (1 − 𝑥) 𝑥
 ● ↘ requires ↗ (1 − 𝑥) 𝑥

 Trail of Bits 55 Primitive Security Assessment
 PUBLIC

 E. Code Quality Recommendations

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 ● Replace variable == false with !variable . This will improve code readability.

 if (EngineAddress.isContract(engine) == false)

 Figure D.1: rmm-managers/contracts/PrimitiveManager.sol#L53

 if (EngineAddress.isContract(engine) == false)

 Figure D.2: rmm-managers/contracts/PrimitiveManager.sol#L89

 if (EngineAddress.isContract(engine) == false)

 Figure D.3: rmm-managers/contracts/base/MarginManager.sol#L34

 if (EngineAddress.isContract(engine) == false)

 Figure D.4: rmm-managers/contracts/base/SwapManager.sol#L37

 if (success == false)

 Figure D.5: rmm-managers/contracts/libraries/TransferHelper.sol#L68

 ● Replace memory params ’s data location with calldata . This will improve gas
 usage.

 function swap(SwapParams memory params) external payable override lock
 checkDeadline(params.deadline) {

 Figure D.6: rmm-managers/contracts/base/SwapManager.sol#L29

 ● Remove unused parameters. This will improve code readability and will make the
 codebase easier to maintain, modify, and audit.

 function render(address engine, uint256 tokenId) external pure override returns
 (string memory) {

 return
 string (

 abi.encodePacked(
 "data:image/svg+xml;base64,",
 Base64.encode(

 bytes (
 ...

)
)

 Trail of Bits 56 Primitive Security Assessment
 PUBLIC

)
);

 }

 Figure D.7: rmm-managers/contracts/base/SwapManager.sol#L10-L24

 ● Use bytes constant private _empty = ""; . This will improve gas usage and code
 readability, showing users that the variable is constant.

 /// @dev Empty variable to pass to the _mint function
 bytes private _empty;

 Figure D.8: rmm-managers/contracts/base/PositionManager.sol#L16-L17

 ● Use the same lock modifier in rmm-manager and rmm-core . This will improve
 gas usage and code readability by using the same lock implementation.

 modifier lock() {
 if (_unlocked != 1) revert LockedError();

 _unlocked = 0;
 _;
 _unlocked = 1;

 }

 Figure D.9: rmm-managers/contracts/base/Reentrancy.sol#L14-L20

 modifier lock() {
 if (locked != 1) revert LockedError();

 locked = 2;
 _;
 locked = 1;

 }

 Figure D.10: rmm-core/contracts/PrimitiveEngine.sol#L75-L81

 ● Use consistent language across the codebase.

 ○ Rename scalefromX64 to scaleFromX64 .

 function scalefromX64(int128 value, uint256 factor) internal pure returns (uint256 y)

 Figure D.11: rmm-core/contracts/libraries/Units.sol#L48

 ○ Rename percentage(uint256) to percentageToX64 .

 function percentage(uint256 denorm) internal pure returns (int128)

 Figure D.12: rmm-core/contracts/libraries/Units.sol#L57

 ○ Rename percentage(int128) to percentageFromX64 .

 Trail of Bits 57 Primitive Security Assessment
 PUBLIC

 function percentage(int128 denorm) internal pure returns (uint256)

 Figure D.13: rmm-core/contracts/libraries/Units.sol#L64

 Trail of Bits 58 Primitive Security Assessment
 PUBLIC

 F. Additional Recommended Properties

 In this section, we recommend additional extensions of Echidna to consider after the audit.

 General Properties
 ● Identify the safe deltas for differences in system values. These deltas will also

 help with refining Echidna properties and checking preconditions.

 Libraries
 ● Check that the paper reimplementation and the library implementation

 revert accordingly. This will allow Echidna to compare reverting cases of the CDF
 functions.

 rmm-core
 ● Extend the Echidna tests to cover a large input safe bound. Currently, the

 Echidna inputs are limited to [1, uint64.max] inclusively. We recommend
 extending this limit to explore additional system states to check that expected
 behavior surrounding larger numbers is correct.

 ● Implement monotonically increasing pool invariant checks. This will allow
 Echidna to check that the invariant of the system is always increasing.

 ● Extend Echidna to test against multiple engine configurations with different
 token decimals and scale factors. The current Echidna configuration points to an
 engine with two tokens of 18 decimal points. Extending this would allow Echidna to
 explore additional states.

 rmm-manager
 ● Add additional precondition checks on allocate and remove . Due to time

 constraints, the PrimitiveManager tests are likely missing additional
 preconditions checks.

 ● Integrate tests of deposit , withdraw , and swap in PrimitiveManager .

 ● Implement checks to verify that the margins in the manager always match the
 margin balances in the engine.

 Trail of Bits 59 Primitive Security Assessment
 PUBLIC

 G. Incident Response Recommendations

 In this section, we provide recommendations around the formulation of an incident
 response plan.

 ● Identify who (either specific people or roles) is responsible for carrying out the
 mitigations (deploying smart contracts, pausing contracts, upgrading the front
 end, etc.).

 ○ Specifying these roles will strengthen the incident response plan and ease
 the execution of mitigating actions when necessary.

 ● Document internal processes for situations in which a deployed remediation
 does not work or introduces a new bug.

 ○ Consider adding a fallback scenario that describes an action plan in the event
 of a failed remediation.

 ● Clearly describe the intended process of contract deployment.

 ● Consider whether and under what circumstances Primitive will make affected
 users whole after certain issues occur.

 ○ Some scenarios to consider include an individual or aggregate loss, a loss
 resulting from user error, a contract flaw, and a third-party contract flaw.

 ● Document how Primitive plans keep up to date on new issues, both to inform
 future development and to secure the deployment toolchain and the external
 on-chain and off-chain services that the system relies on.

 ○ For each language and component, describe the noteworthy sources for
 vulnerability news. Subscribe to updates for each source. Consider creating a
 special private Discord channel with a bot that will post the latest
 vulnerability news; this will help the team keep track of updates all in one
 place. Also consider assigning specific team members to keep track of the
 vulnerability news of a specific component of the system.

 ● Consider scenarios involving issues that would indirectly affect the system.

 ● Determine when and how the team would reach out to and onboard external
 parties (auditors, affected users, other protocol developers, etc.).

 ○ Some issues may require collaboration with external parties to efficiently
 remediate them.

 Trail of Bits 60 Primitive Security Assessment
 PUBLIC

 ● Define contract behavior that is considered abnormal for off-chain
 monitoring.

 ○ Consider adding more resilient solutions for detection and mitigation,
 especially in terms of specific alternate endpoints and queries for different
 data as well as status pages and support contacts for affected services.

 ● Combine issues and determine whether new detection and mitigation
 scenarios are needed.

 ● Perform periodic dry runs of specific scenarios in the incident response plan to
 find gaps and opportunities for improvement and to develop muscle memory.

 ○ Document the intervals at which the team should perform dry runs of the
 various scenarios. For scenarios that are more likely to happen, perform dry
 runs more regularly. Create a template to be filled in after a dry run to
 describe the improvements that need to be made to the incident response.

 Trail of Bits 61 Primitive Security Assessment
 PUBLIC

 F. Fix Log

 On February 11, 2022, Trail of Bits reviewed the fixes and mitigations implemented by the
 Primitive team for the issues identified in this report. The Primitive team fixed three of the
 issues reported in the original assessment, partially fixed one, and acknowledged but did
 not fix the other 10. We reviewed each of the fixes to ensure that the proposed
 remediation would be effective. For additional information, please refer to the Detailed Fix
 Log .

 ID Title Severity Fix Status

 1 Transfer operations may silently fail due to the lack
 of contract existence checks

 High Not Fixed

 2 Project dependencies contain vulnerabilities Medium Partially Fixed

 3 Anyone could steal pool tokens’ earned interest Low Not Fixed

 4 Solidity compiler optimizations can be problematic Informational Not Fixed

 5 Lack of zero-value checks on functions Informational Not Fixed

 6 uint256.percentage() and int256.percentage() are
 not inverses of each other

 Undetermined Fixed

 7 Users can allocate tokens to a pool at the moment
 the pool reaches maturity

 Informational Fixed

 8 Possible front-running vulnerability during BUFFER
 time

 Undetermined Not Fixed

 9 Inconsistency in allocate and remove functions Informational Not Fixed

 10 Areas of the codebase that are inconsistent with
 the documentation

 Informational Fixed

 Trail of Bits 62 Primitive Security Assessment
 PUBLIC

 11 Allocate and remove are not exact inverses of each
 other

 Medium Not Fixed

 12 scaleToX64() and scalefromX64() are not inverses
 of each other

 Undetermined Not Fixed

 13 getCDF always returns output in the range of (0, 1) Undetermined Not Fixed

 14 Lack of data validation on withdrawal operations Medium Not Fixed

 Trail of Bits 63 Primitive Security Assessment
 PUBLIC

 Detailed Fix Log
 TOB-PTV-2: Project dependencies contain vulnerabilities
 Partially fixed. The underscore , lodash , and follow-redirects packages were updated
 in the core folder (2d5ace5) and the manager directory (f79ed0f). However, yarn audit
 indicates that additional vulnerable dependencies remain in the codebase with
 node-fetch .

 Primitive stated the following:
 The vulnerable packages will be updated once safe versions are made available .

 TOB-PTV-6: uint256.percentage() and int256.percentage() are not inverses of each
 other
 Fixed. The percentage(int128 denorm) function was removed from the codebase
 (d35e4c0).

 TOB-PTV-7: Users can allocate tokens to a pool at the moment the pool reaches
 maturity
 Fixed. Primitive changed the allocation requirements to “allow allocation to happen
 post-maturity indefinitely.” (ad00bcb)

 TOB-PTV-9: Inconsistency in allocate and remove functions
 Not fixed. Primitive added documentation explaining the differences between the values
 passed to these functions (Integration Checklist).

 TOB-PTV-10: Areas of the codebase that are inconsistent with the documentation
 Fixed. Primitive updated the maximum gamma bound to match the specifications in the
 white paper (1b625a7).

 Trail of Bits 64 Primitive Security Assessment
 PUBLIC

https://github.com/primitivefinance/rmm-core/pull/263/commits/2d5ace540d7bd8ed58ecd145426b2aff73513ce3
https://github.com/primitivefinance/rmm-manager/pull/79/commits/f79ed0feca063bfd0467a1d857e1aa9c975fc79a
https://github.com/primitivefinance/rmm-core/pull/264/commits/d35e4c04d2558c0ed40d43a71c13b372ed6bc7b7
https://github.com/primitivefinance/rmm-core/pull/274/commits/ad00bcb68b5c1e22ada7cf53f5031d4b52b624b4
https://docs.primitive.finance/technical/integration-checklist
https://github.com/primitivefinance/rmm-core/pull/277/commits/1b625a73c44c1fe3c3ca3edd8da9e62965c00579

