
 Seaport Protocol
 Security Assessment

 May 20, 2022

 Prepared for:

 0age

 OpenSea

 Prepared by: Nat Chin, Troy Sargent, Bo Henderson, and Robert Schneider

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
https://www.trailofbits.com/
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to OpenSea
 under the terms of the project statement of work and has been made public at OpenSea’s
 request. Material within this report may not be reproduced or distributed in part or in
 whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 OpenSea Seaport Security Assessment
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 5

 Summary of Recommendations 7

 Project Summary 8

 Project Goals 9

 Project Targets 10

 Project Coverage 11

 Automated Testing 12

 Codebase Maturity Evaluation 15

 Summary of Findings 18

 Detailed Findings 19

 1. Project dependencies contain vulnerabilities 19

 2. Lack of zero-value checks on functions 20

 3. Solidity compiler optimizations can be problematic 22

 4. Error-prone approach to data validation 23

 5. User-controlled return data can trigger an out-of-gas error 25

 6. Failure to check existence of orders before cancellation 27

 7. Callbacks can be used to alter token state 28

 8. Use of Yul optimization pipeline and solc 0.8.13 30

 9. Potential front-running of channel-removal transactions 31

 Trail of Bits 3 OpenSea Seaport Security Assessment
 PUBLIC

 10. Lack of a zero-value check in the validate function 32

 11. fulfillAdvancedOrder may revert and prevent order fulfillment 33

 A. Vulnerability Categories 35

 B. Code Maturity Categories 37

 C. Risks Associated with Third-Party Conduits 39

 D. Echidna Integration 40

 E. Slither Script 46

 F. Transaction Traces 53

 G. System Invariants 56

 H. Incident Response Recommendations 58

 I. Token Integration Checklist 60

 Trail of Bits 4 OpenSea Seaport Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 OpenSea engaged Trail of Bits to review the security of its Seaport system. From April 18 to
 May 12, 2022, a team of two consultants conducted a security review of the client-provided
 source code, with seven person-weeks of effort. Details of the project’s timeline, test
 targets, and coverage are provided in subsequent sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of a smart contract, a loss of funds, or unexpected behavior in the target
 system. We conducted this audit with full knowledge of the target system, including access
 to the source code and documentation. We performed static and dynamic testing of the
 target system and its codebase, using both automated and manual processes.

 Summary of Findings
 The audit did not uncover significant flaws that could result in the compromise of a smart
 contract, a loss of funds, or unexpected behavior in the target system.

 EXPOSURE ANALYSIS

 Severity Count

 High 0

 Medium 0

 Low 2

 Informational 7

 Undetermined 2

 CATEGORY BREAKDOWN

 Category Count

 Data Validation 5

 Patching 1

 Testing 1

 Timing 2

 Undefined Behavior 2

 Trail of Bits 5 OpenSea Seaport Security Assessment
 PUBLIC

 Notable Findings
 An overview of several notable findings is provided below.

 ● Error-prone approach to data validation (TOB-OSC-4 , TOB-OSC-10)
 The Seaport system relies on assert functions to validate the results of function calls
 to perform reentrancy checks. Instead of using modifiers to handle this validation,
 the contracts invoke these assert functions through a complex nested flow. This
 practice is error-prone, as it can result in the omission of data validation.

 ● Unexpected behavior due to the use of risky Solidity components
 (TOB-OSC-8 , TOB-OSC-3)
 The contracts use Solidity compiler optimizations such as the new Yul optimization
 pipeline. These optimizations introduce risks, as bugs in those components could
 create exploitable issues in the Seaport codebase. They also make testing the code
 with different compiler versions and settings impossible.

 Trail of Bits 6 OpenSea Seaport Security Assessment
 PUBLIC

 Summary of Recommendations

 The OpenSea Seaport contracts are a work in progress with multiple planned iterations.
 Trail of Bits recommends that OpenSea address the findings detailed in this report and
 take the following additional steps prior to deployment:

 ● Extend the Echidna tests to cover additional properties related to the creation of
 complex orders with conduits and zones, the fulfillment of orders, and the
 order-matching process. Most importantly, identify and check the system invariants,
 including those in appendix G .

 ● Write additional user documentation on the expected behavior of the system. The
 documentation should cover common errors users may encounter and explain what
 causes them and how to handle them.

 ● Create a flowchart diagram outlining the entire system architecture, including the
 off-chain and on-chain components. A flowchart can help optimize the user flow and
 clarify the interactions between different systems.

 ● Test the reference implementation against the optimized implementation. To do
 this, perform differential fuzzing of the values returned by the pure functions and
 verify that after each transaction, the contracts have the same state in both
 implementations.

 ● Document the security risks of the system. Ensure that exchanges that contain
 vulnerabilities are not added to the protocol as channels, especially if those
 exchanges make calls with user-provided addresses and data.

 Trail of Bits 7 OpenSea Seaport Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Cara Pearson , Project Manager
 dan@trailofbits.com cara.pearson@trailofbits.com

 The following engineers were associated with this project:

 Nat Chin , Consultant Troy Sargent , Consultant
 natalie.chin@trailofbits.com troy.sargent@trailofbits.com

 Bo Henderson , Consultant Robert Schneider , Consultant
 bo.henderson@trailofbits.com robert.schneider@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 April 7, 2022 Pre-project kickoff call

 April 25, 2022 Status update meeting #1

 May 2, 2022 Status update meeting #2

 May 9, 2022 Status update meeting #3

 May 17, 2022 Delivery of report draft

 May 17, 2022 Report readout meeting

 May 20, 2022 Delivery of final report

 Trail of Bits 8 OpenSea Seaport Security Assessment
 PUBLIC

mailto:dan@trailofbits.com
mailto:cara.pearson@trailofbits.com
mailto:natalie.chin@trailofbits.com
mailto:troy.sargent@trailofbits.com
mailto:bo.henderson@trailofbits.com
mailto:robert.schneider@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the OpenSea Seaport
 system. Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Could an attacker steal funds from the system?

 ● Are there appropriate access controls in place for user and admin operations?

 ● Could an attacker trap the system?

 ● Are there any denial-of-service attack vectors?

 ● Could users lose access to their funds?

 ● Does the system validate and limit fee amounts?

 ● Does the system validate function inputs correctly?

 ● What are the risks associated with token and contract callbacks?

 ● What are the risks associated with the use of conduits in orders and the use of
 channels?

 Trail of Bits 9 OpenSea Seaport Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target. We worked from the
 first commit in our manual review and from the second in our fuzz testing. The second
 commit added the Conduit and ConduitController contracts.

 Seaport

 Repository https://github.com/ProjectOpenSea/seaport

 Versions f17082fca3e99b409f53040d8858e84b0246aa22,
 00bd847df9971e6c1e61c7c4b58e6db6ce95a93f

 Type Solidity

 Platform Ethereum

 Trail of Bits reviewed the Consideration contract suite, which has since been renamed
 Seaport .

 Trail of Bits 10 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/ProjectOpenSea/seaport

 Project Coverage

 This section provides an overview of the coverage of the review, as determined by our
 high-level engagement goals. Our approaches and their results include the following:

 Consideration and related contracts. The in-scope contracts include a main contract,
 Consideration , which is the entry point through which users validate and fulfill orders.
 This contract inherits from contracts including ConsiderationInternalView ,
 ConsiderationPure , ConsiderationInternal , and ConsiderationBase , which all
 define helper functions to facilitate order matching. We performed a manual review of
 these contracts and their assembly code and used Echidna to test them.

 ConsiderationStructs and ConsiderationEnums . These two contracts contain the
 structs and enums used to represent orders in the validation and fulfillment of orders. We
 performed a manual review of these contracts, which are also used to generate expected
 calldata for Echidna testing.

 ConsiderationConstants . This contract defines the pointers, offsets, and memory
 layouts of the structs used extensively throughout the system. We performed a manual
 review of this contract.

 During the audit, OpenSea discovered and patched a bug affecting the fulfillment of orders.
 Specifically, attempts to fulfill orders involving batched transfers of ERC1155 tokens with
 different IDs would revert. OpenSea removed the ERC1155 batched transfer functionality
 from the marketplace; the change was introduced in the second commit listed in the
 “Project Targets” section.

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of the
 following system elements, which may warrant further review:

 ● The off-chain orderbook

 ● The user interface

 ● The external off-chain components that interact with the Consideration contracts

 Trail of Bits 11 OpenSea Seaport Security Assessment
 PUBLIC

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description Policy

 Slither A static analysis framework that can statically verify
 algebraic relationships between Solidity variables

 Appendix E

 Echidna A smart contract fuzzer that can rapidly test security
 properties via malicious, coverage-guided test case
 generation

 Appendix D

 Test Results
 The results of this focused testing are detailed below.

 Single-line assembly equivalence. The codebase contains a significant amount of
 assembly. We used Echidna to check the equivalence of complex assembly operations.

 Property Tool Result

 The assembly code checks whether there is code at the
 provided tokenAddress and, if there is, whether the call to
 that address fails.

 Echidna Passed

 The assembly code checks the result of each external call,
 verifying that the call either failed or did not return any data.

 Echidna Passed

 Trail of Bits 12 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/trailofbits/slither
https://github.com/trailofbits/echidna

 Consideration contracts. These contracts allow offerers to validate orders and callers to
 fulfill and match orders. We used Echidna to check the assumptions made throughout
 these contracts.

 ID Property Tool Result

 1 Once an order has been validated, getOrderStatus will return
 true for is Validated .

 Echidna Passed

 2 Once an order has been validated, getOrderStatus will return
 false for isCanceled until it is canceled.

 Echidna Passed

 3 With the correct preconditions and arguments, a call to
 validate() will always succeed.

 Echidna Passed

 4 Once the entire order has been filled, the size of the filled order
 is equal to the order’s size and is nonzero.

 Echidna Passed

 5 With the correct preconditions, a call to cancel will always
 succeed; additionally, getOrderStatus will return true for
 isCanceled .

 Echidna Passed

 6 With the correct preconditions, a call to incrementNonce will
 always succeed.

 Echidna Passed

 7 With the correct preconditions, a call to fulfillBasicOrder
 will always succeed.

 Echidna Passed

 8 With the correct preconditions, a call to
 fulfillAdvancedOrder will always succeed.

 Echidna Passed

 9 The remaining portion of a partially filled order can be filled via
 a call to fulfillAdvancedOrder .

 Echidna Passed

 Trail of Bits 13 OpenSea Seaport Security Assessment
 PUBLIC

 10 As long as they have received the correct approvals,
 unrestricted (open) orders can be fulfilled regardless of
 whether a conduit is being used.

 Echidna Passed

 11 If a basic or advanced order is successful, the seller will receive
 all of the consideration items, and the buyer, all of the offer
 items.

 Echidna Passed

 Slither script. We wrote Slither scripts to detect improper uses of the _reentrancyGuard .

 Property Tool Script

 The same value is not written to _reentrancyGuard multiple
 times.

 Slither Appendix E

 All paths (e.g., conditional statements) result in the same
 _reentrancyGuard value.

 Slither Appendix E

 All internal calls result in the same _reentrancyGuard value. Slither Appendix E

 The value of _reentrancyGuard is not set to _ENTERED at the
 end of a path; if it is, the contract will be trapped.

 Slither Appendix E

 The value of _reentrancyGuard is set to _ENTERED before an
 external call is executed.

 Slither Appendix E

 Trail of Bits 14 OpenSea Seaport Security Assessment
 PUBLIC

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The system uses Solidity v0.8.0 arithmetic operations,
 most of which are tested through unit tests. Moreover,
 many of the arithmetic and parameter-tuning operations
 are documented. However, automated fuzz testing of the
 system to detect complex arithmetic bugs (like that
 described in TOB-OSC-11) would be beneficial. See
 appendix G for a list of system invariants that could be
 tested through fuzzing.

 Moderate

 Auditing The critical state-changing operations emit sufficient
 events. The OpenSea team provided a detailed incident
 response plan that includes points of contact and
 outlines the steps to be taken when a vulnerability is
 raised. Appendix H details additional recommendations
 on developing and maintaining an incident response
 plan.

 Satisfactory

 Authentication /
 Access Controls

 The system generally adheres to the principle of least
 privilege; the level of access granted to privileged users is
 limited, and users can enter and exit the system at will.
 Moreover, users can adjust their security settings to
 reflect their use of the system (e.g., the use of a conduit).
 They can also use nonces to cancel orders and zones to
 validate orders (with some limitations).

 Satisfactory

 Complexity
 Management

 The system includes a contract that inherits from pure,
 view, struct, and enum contracts, which helps modularize
 the architecture. Most functions are documented and
 concise; however, the complicated use of assembly
 reduces the codebase’s readability and increases the

 Weak

 Trail of Bits 15 OpenSea Seaport Security Assessment
 PUBLIC

 likelihood of bugs.

 Cryptography
 and Key
 Management

 The system performs EIP-712 struct hashing and
 signature verification correctly. Additionally, the use of
 the EIP-712 standard decreases the risk of a phishing
 attack against OpenSea users. We did not evaluate the
 management of hot wallet keys.

 Satisfactory

 Decentralization The off-chain orderbook may constitute a point of failure
 in the system, as the compromise of the off-chain system
 could lead to a denial-of-service condition.

 While the Seaport exchange is immutable, the
 deployment risks for users should be thoroughly
 documented. Additionally, as users can opt in to the use
 of conduits, the risks associated with the use of
 third-party conduits should be explicitly documented.

 Moderate

 Documentation We were provided with documentation sufficient for
 analysis of the protocol’s process flows, data structures,
 and assembly code. However, we recommend developing
 additional documentation regarding the ramifications of
 low-level calls.

 Satisfactory

 Front-Running
 Resistance

 Using an off-chain orderbook carries an inherent
 front-running risk; specifically, because callers submit
 offerers’ signatures to the blockchain, an offerer’s order
 could be front-run. Channel updates are also vulnerable
 to front-running, through which an attacker could
 transfer funds prior to the removal of a channel
 (TOB-OSC-9).

 Moderate

 Low-Level
 Manipulation

 The system uses numerous low-level calls to reduce
 storage-related gas costs. The system also checks the size
 of the data returned in external calls, and those calls will
 not result in silent failures.

 Moderate

 Trail of Bits 16 OpenSea Seaport Security Assessment
 PUBLIC

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712

 Testing and
 Verification

 The system has almost complete unit test coverage, and
 the few coverage gaps are caused by unfinished tests. In
 addition to finishing these tests, we recommend using
 Echidna to perform property testing and differential
 fuzzing against the reference implementation
 (TOB-OSC-8).

 Moderate

 Trail of Bits 17 OpenSea Seaport Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Project dependencies contain vulnerabilities Patching Low

 2 Lack of zero-value checks on functions Data Validation Informational

 3 Solidity compiler optimizations can be
 problematic

 Undefined
 Behavior

 Informational

 4 Error-prone approach to data validation Undefined
 Behavior

 Undetermined

 5 User-controlled return data can trigger an
 out-of-gas error

 Data Validation Informational

 6 Failure to check existence of orders before
 cancellation

 Data Validation Informational

 7 Callbacks can be used to alter token state Data Validation Informational

 8 Use of Yul optimization pipeline and solc 0.8.13 Testing Informational

 9 Potential front-running of channel-removal
 transactions

 Timing Informational

 10 Lack of a zero-value check in the validate function Timing Low

 11 fulfillAdvancedOrder may revert and prevent
 order fulfillment

 Data Validation Undetermined

 Trail of Bits 18 OpenSea Seaport Security Assessment
 PUBLIC

 Detailed Findings

 1. Project dependencies contain vulnerabilities

 Severity: Low Difficulty: High

 Type: Patching Finding ID: TOB-OSC-1

 Target: consideration/

 Description
 Although dependency scans did not yield a direct threat to the Seaport codebase, yarn
 audit identified a dependency with a known vulnerability. Due to the sensitivity of the
 deployment code and its environment, it is important to ensure dependencies are not
 malicious. Problems with dependencies in the development pipeline could have a
 significant effect on the Seaport system as a whole. The yarn audit output detailing the
 vulnerability is provided below:

 GHSA ID Description Dependency Severity

 GHSA-27v7-qhfv-
 rqq8

 Insecure Credential Storage in
 web3

 web3 Low

 Figure 1.1: An advisory affecting the Seaport codebase’s web3 dependency

 Exploit Scenario
 Alice installs the Consideration dependencies on a clean machine. Unbeknownst to Alice, a
 dependency of the project contains an exploitable high-severity bug that could lead to the
 disclosure of sensitive information. Alice subsequently uses the dependency, disclosing
 sensitive information to an unknown actor.

 Recommendations
 Short term, use yarn audit to ensure dependencies are up to date. Several node modules
 have been documented as malicious because they execute malicious code when installing
 dependencies to projects. Keep modules current and verify their integrity after installation.

 Long term, consider integrating automated dependency auditing into the development
 workflow. If a dependency cannot be updated when a vulnerability is disclosed, ensure that
 the Seaport codebase does not use and is not affected by the vulnerable functionality of
 the dependency.

 Trail of Bits 19 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/advisories/GHSA-27v7-qhfv-rqq8
https://github.com/advisories/GHSA-27v7-qhfv-rqq8

 2. Lack of zero-value checks on functions

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-OSC-2

 Target: consideration/

 Description
 Certain setter functions fail to validate incoming arguments, so callers can accidentally set
 important state variables to the zero address.

 For example, in the constructor of the Consideration contract, developers can define the
 legacy proxy registry, legacy token transfer proxy, and expected proxy implementation
 parameters and set their addresses to the zero address.

 /**
 * @dev Derive and set hashes, reference chainId, and associated domain
 * separator during deployment.
 *
 * @param legacyProxyRegistry A proxy registry that stores per-user
 * proxies that may optionally be used to
 * transfer approved ERC721+1155 tokens.
 * @param legacyTokenTransferProxy A shared proxy contract that may
 * optionally be used to transfer
 * approved ERC20 tokens.
 * @param requiredProxyImplementation The implementation that must be set on
 * each proxy in order to utilize it.
 */
 constructor (

 address legacyProxyRegistry ,
 address legacyTokenTransferProxy ,
 address requiredProxyImplementation

) {
 // Derive hashes, reference chainId, and associated domain separator.
 _NAME_HASH = keccak256 (bytes (_NAME));
 _VERSION_HASH = keccak256 (bytes (_VERSION));

 Figure 2.1: The constructor of ConsiderationBase.sol

 A failure to immediately reset an address that has been set to the zero address could result
 in unexpected behavior.

 Trail of Bits 20 OpenSea Seaport Security Assessment
 PUBLIC

 Exploit Scenario
 Alice accidentally sets a proxy implementation to the zero address when deploying a new
 version of the Consideration contract. The misconfiguration causes the system to
 behave unexpectedly.

 Recommendations
 Short term, add zero-value checks to all constructor functions and for all setter arguments
 to ensure that users cannot accidentally set incorrect values, misconfiguring the system.
 Document any arguments that are intended to be set to the zero address, highlighting the
 expected values of those arguments on each chain.

 Long term, use the Slither static analyzer to catch common issues such as this one.
 Consider integrating a Slither scan into the project’s continuous integration pipeline,
 pre-commit hooks, or build scripts.

 Trail of Bits 21 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/crytic/slither

 3. Solidity compiler optimizations can be problematic

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-OSC-3

 Target: consideration/

 Description
 OpenSea has enabled optional compiler optimizations in Solidity.

 There have been several optimization bugs with security implications. Moreover,
 optimizations are actively being developed . Solidity compiler optimizations are disabled by
 default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
 unclear how well they are being tested and exercised.

 High-severity security issues due to optimization bugs have occurred in the past . A
 high-severity bug in the emscripten -generated solc-js compiler used by Truffle and
 Remix persisted until late 2018. The fix for this bug was not reported in the Solidity
 CHANGELOG. Another high-severity optimization bug resulting in incorrect bit shift results
 was patched in Solidity 0.5.6 . More recently, another bug due to the incorrect caching of
 keccak256 was reported.

 A compiler audit of Solidity from November 2018 concluded that the optional optimizations
 may not be safe .

 It is likely that there are latent bugs related to optimization and that new bugs will be
 introduced due to future optimizations.

 Exploit Scenario
 A latent or future bug in Solidity compiler optimizations—or in the Emscripten transpilation
 to solc-js —causes a security vulnerability in the Consideration contracts.

 Recommendations
 Short term, measure the gas savings from optimizations and carefully weigh them against
 the possibility of an optimization-related bug.

 Long term, monitor the development and adoption of Solidity compiler optimizations to
 assess their maturity.

 Trail of Bits 22 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/ethereum/solidity/pulls?q=label%3Aoptimizer+
https://docs.soliditylang.org/en/latest/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://github.com/ethereum/solidity/releases/tag/v0.5.6
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.openzeppelin.com/solidity-compiler-audit-8cfc0316a420/
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

 4. Error-prone approach to data validation

 Severity: Undetermined Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-OSC-4

 Target: consideration/

 Description
 The system lacks robust data validation checks. The contracts call assertion functions to
 validate the results of external calls and assume that reentrancy checks will be performed
 in nested function calls rather than executing per-function reentrancy checks.

 The contracts rely on a nested function flow in which functions perform assertions to
 validate the results of function calls. As a result, determining the data validation expected
 to occur is challenging. For example, after executing a token transfer, the
 _ transferERC20 , _ transferERC721 , and _ transferERC1155 functions need to call
 _ assertValidTokenTransfer to check that there is code behind the address of the
 callee contract.

 Similarly, the system’s reentrancy guards implicitly assume that state-modifying functions
 will call _setReentrancyGuard and view functions will call _assertNotReentrant . This
 pattern is error-prone because those calls often occur in nested internal calls and may be
 skipped. Typically, function modifiers are used to clearly indicate that a function will be
 locked prior to its execution and unlocked upon the completion of its execution. We have
 provided a lint that can statically detect functions that fail to follow this pattern (appendix
 E). These lints do not currently raise any warnings, but future iterations of the codebase
 must also pass these checks.

 This diffuse system of data validation requires developers and auditors to increase their
 focus on the context of a call, which is made more difficult by the use of low-level assembly.
 More importantly, it makes the code less robust. Developers cannot modify a function in
 isolation; instead, they have to look at all transactions and stack traces to ensure that the
 required validation is performed correctly. This process is error-prone and increases the
 likelihood that high-severity issues will be introduced into the system.

 Exploit Scenario
 Alice, a Configuration protocol developer, adds a new function that calls an existing
 function. This existing function makes implicit assumptions about the data validation that
 occurs before it is called. However, Alice is not fully aware of those assumptions and fails to

 Trail of Bits 23 OpenSea Seaport Security Assessment
 PUBLIC

 implement the required data validation, creating an attack vector that can be used to steal
 funds from the protocol.

 Recommendations
 Short term, integrate the lint provided in appendix E into the repository’s continuous
 integration pipeline and add tests for publicly callable functions to ensure that they
 adequately handle reverts. Additionally, consider creating a flowchart to map out the
 expected use of reentrancy guards and to ensure that a mutex is set and checked in all
 functions that require one.

 Long term, ensure that the protocol’s functions perform exhaustive validation of their
 inputs and of the system’s state and that they do not assume that validation has been
 performed further up in the call stack (or will be performed further down). Such
 assumptions make the code brittle and increase the likelihood that vulnerabilities will be
 introduced when the code is modified. Any implicit assumptions regarding data validation
 or access controls should be explicitly documented; otherwise, modifications to the code
 could break those important assumptions.

 Trail of Bits 24 OpenSea Seaport Security Assessment
 PUBLIC

 5. User-controlled return data can trigger an out-of-gas error

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-OSC-5

 Target: ConsiderationInternal.sol , ConsiderationPure.sol

 Description
 When an external call fails, _revertWithReasonIfOneIsReturned copies the return data
 into memory. However, there is no limit on the size of the return data it copies. An attacker
 could exploit this to force _revertWithReasonIfOneIsReturned to raise an out-of-gas
 error instead of an error indicating that the external call failed.

 The _ revertWithReasonIfOneIsReturned function is meant to bubble up the reasons
 for the revert of an external call:

 function _revertWithReasonIfOneIsReturned() internal pure {
 assembly {

 // If data was returned...
 if returndatasize () {

 // Copy returndata to memory, overwriting existing memory.
 returndatacopy (0, 0, returndatasize ())

 // Revert, specifying memory region with copied returndata.
 revert (0, returndatasize ())

 }
 }

 }

 Figure 5.1: ConsiderationPure.sol#L1254-1265

 To do this, it copies the external call’s return data into memory and returns that data.

 After an external call, the caller will retain at least 1/64 th of the gas available before the call
 (see EIP-150). One might assume that this amount of gas would be sufficient for
 _revertWithReasonIfOneIsReturned to bubble up the reasons for the failure.
 However, a malicious actor could craft an external call that would trigger the expansion of a
 large amount of memory, causing the transaction to consume all of the gas. The user might
 then believe that the transaction failed because too little gas was provided, when in reality,
 the external call was the source of the failure.

 An attacker could thereby trick a user into performing the same transaction multiple times
 (and adding more gas each time), causing the user to incur a loss.

 Trail of Bits 25 OpenSea Seaport Security Assessment
 PUBLIC

https://eips.ethereum.org/EIPS/eip-150

 Exploit Scenario
 Eve creates a consideration item to sell her NFT for ETH on the Seaport marketplace. She
 provides the address of her smart contract wallet, which performs gas-intensive
 operations, in the receive method. Bob calls fulfillBasicOrder on Eve’s consideration
 item. The _transferEth function sends a low-level call to Eve’s smart contract wallet,
 which consumes nearly all of the forwarded gas, calls revert , and returns a large array of
 bytes to the calling contract. The Consideration contract’s
 _revertWithReasonIfOneIsReturned function then calls returndatacopy , which
 throws an out-of-gas exception rather than reverting as intended. Bob tries resending the
 transaction with much more gas, but the transaction fails again. As a result, Bob loses the
 gas he sent with the transactions and does not receive the NFT.

 Recommendations
 Short term, have the contract check the size of the return data before loading it into
 memory and return a generic error message if it is too large.

 Note that the changes made to _revertWithReasonIfOneIsReturned (those introduced
 in commit 00bd847df9971e6c1e61c7c4b58e6db6ce95a93f) are not in line with our
 recommendations and introduce needless complexity without addressing this issue.

 Long term, document this issue and any mitigations that have been implemented for it to
 inform users, developers, and third-party integrations that an out-of-gas error may be
 raised when a call to an external contract fails. Consider integrating Echidna into the
 development process to thoroughly test all user-controlled inputs and to check for any
 inconsistent or unexpected behavior caused by those inputs.

 Trail of Bits 26 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/crytic/echidna

 6. Failure to check existence of orders before cancellation

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-OSC-6

 Target: consideration/contracts/Consideration.sol

 Description
 When a user calls cancel on an order, the isCanceled property is set to true , and the
 cancel function will return successfully regardless of whether the order has been
 validated or signed by the user. As a result, a user could mistakenly cancel a nonexistent
 order, leaving the order he or she meant to cancel available for fulfillment.

 Exploit Scenario
 Bob signs an order to sell an NFT and publishes the order. The floor price of the NFT rises,
 so Bob signs and publishes a new order with a higher price. He then tries to cancel his old
 order but accidentally calls cancel on a nonexistent order. Despite the mistake, the call is
 successful, leading Bob to think that he canceled the correct order. When his original order
 is fulfilled at the lower price, he is caught by surprise.

 Recommendations
 Short term, provide clear user documentation informing users to check the status of an
 order after attempting to cancel the order; that way, users will be sure that they have
 canceled the order(s) they intended to cancel. Additionally, consider redesigning the UI
 such that it provides users with a list of valid orders when they attempt to make a
 cancellation; this will enable users to select a valid order from the list instead of providing
 the order parameters themselves.

 Long term, review all opportunities for user error and ensure that the documentation
 clearly describes the actions users can take to minimize risk.

 Trail of Bits 27 OpenSea Seaport Security Assessment
 PUBLIC

 7. Callbacks can be used to alter token state

 Severity: Informational Difficulty: Medium

 Type: Data Validation Finding ID: TOB-OSC-7

 Target: ConsiderationInternal.sol

 Description
 The callback function executed when transferring an NFT can be used to alter the state of
 another NFT contract (changing its ether balance or number of experience points or
 equipped items, for example). A state change could cause an unexpected decrease in the
 value of a purchase.

 Most standard NFT implementations use an onERC{721|1155}Received hook to execute
 a callback when a token is transferred. The hook is called on the recipient contract:

 if (to.isContract()) {
 try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data)

 returns (bytes4 retval) {
 return retval == IERC721Receiver.onERC721Received.selector;
 …

 Figure 7.1: The _checkOnERC721Received function in ERC721.sol#L394-L396

 During the order fulfillment process, the callback is called each time _transfer is invoked:

 // Transfer the item specified by the execution.
 _transfer(item, execution.offerer, execution.conduitKey);

 Figure 7.2: The _performFinalChecksAndExecuteOrders function in
 ConsiderationInternal.sol#L1897-L1898

 When the callback executes, a recipient can alter the state of any other NFT he or she owns
 by transferring its assets, removing its experience points, or otherwise changing its
 attributes. In this way, the user can lower the value of another NFT yet to be transferred.

 Exploit Scenario
 Eve, a Seaport user, creates an offer for an NFT that has 10 ETH and 10 experience points.
 The NFT is priced at 1 ETH. Bob fulfills the order by providing his NFT as the consideration
 item. When the transfer is being processed, onERC721Received is called on Eve’s recipient
 contract. Eve, through that method, calls her NFT’s contract and withdraws its ETH,
 resetting its experience point balance to zero. When the fulfillment process is complete,

 Trail of Bits 28 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/d4fb3a89f9d0a39c7ee6f2601d33ffbf30085322/contracts/token/ERC721/ERC721.sol#L394-L396

 Bob receives Eve’s NFT; however, it lacks the ETH and experience points he expected to
 receive when he sent the transaction.

 Recommendations
 Short t erm, implement on-chain validation of the most common collections of NFTs with
 attributes that can be altered by their owners, or freeze NFTs prior to executing state
 changes. Additionally, expand the user documentation to explain the risk inherent in
 purchasing NFTs with changeable attributes. Lastly, identify the riskiest NFT collections and
 ensure that the UI highlights the underlying risks.

 Long term, evaluate mechanisms for enabling users to check the state of an NFT after a
 transfer but before the fulfillment transaction is complete. One solution would be to
 implement an optional Oracle call that is able to check whether a particular order has the
 same state it had when it was listed once the order has been fulfilled.

 Trail of Bits 29 OpenSea Seaport Security Assessment
 PUBLIC

 8. Use of Yul optimization pipeline and solc 0.8.13

 Severity: Informational Difficulty: Low

 Type: Testing Finding ID: TOB-OSC-8

 Target: Consideration.sol

 Description
 The Yul intermediate language pipeline is used to compile the Consideration contract.
 This pipeline was considered experimental until March 16, 2022, the day Solidity version
 0.8.13 was released.

 Presumably, the Solidity code compiled through this pipeline could not be compiled
 through the previous version of the pipeline, as compilation would result in
 “stack-too-deep” errors. Thus, the codebase cannot be compiled and tested without the
 new optimization pipeline. Ideally, it would be possible to compile the code with and
 without optimizations, and differential fuzzing of those two versions would not identify any
 discrepancies.

 Additionally, solc 0.8.13 features a compiler directive for optimizing in-line Yul blocks that
 are marked as memory-safe. This feature should not be used when the codebase is
 compiled, as Consideration ’s in-line Yul accesses memory and directly manipulates the
 free memory pointer.

 Recommendations
 Short term, write differential fuzzing tests to ensure equivalence between the functions
 containing Yul and the functions in the reference implementation. Additionally, ensure that
 both implementations pass these tests.

 Long term, compare the gas costs of the optimized and reference implementations and
 identify any functions that reduce the code’s readability in exchange for insignificant gas
 savings. If the gas cost of the reference version is not prohibitively expensive, use it instead
 of the optimized version.

 Additionally, continue to expand the test suite, prioritizing property testing, and monitor
 the Solidity GitHub repository for issues related to the Yul pipeline.

 Trail of Bits 30 OpenSea Seaport Security Assessment
 PUBLIC

 9. Potential front-running of channel-removal transactions

 Severity: Informational Difficulty: High

 Type: Timing Finding ID: TOB-OSC-9

 Target: Consideration.sol

 Description
 If a compromised channel is added to a conduit or a vulnerability is discovered in an
 existing channel, the conduit’s owner may wish to revoke the channel’s access to the
 conduit (i.e., to remove the channel). However, transactions sent by conduit owners to
 remove channels are vulnerable to front-running. Because users approve conduits to
 spend tokens on their behalf, an attacker who has front-run a transaction could then use a
 channel that allows arbitrary calls to steal users’ tokens.

 When a user sends a transaction to remove a vulnerable channel, the user inadvertently
 reveals that he or she has authorized a vulnerable channel. An attacker could then target
 the user programmatically, by decoding the transaction’s calldata to identify the
 transaction in the mempool. This vulnerability may have a particularly strong impact on
 users who elect to use a conduit not controlled by OpenSea’s multisignature contract or
 governance.

 However, the majority of users will likely use OpenSea’s first-party conduit and will thus be
 able to remove a vulnerable channel by executing only one transaction. Users can send
 these single transactions via private relayers such as flash bots to prevent them from being
 detected in public mempools.

 Exploit Scenario
 A channel contract is found to contain a vulnerability that enables attackers to call token
 contracts directly. When the many users who have activated the channel contract in their
 conduits are informed of the vulnerability, they send transactions to remove the channel.
 In doing so, they reveal that their addresses are vulnerable to attack. An attacker then uses
 the conduits they have approved to transfer their tokens to his own account.

 Recommendations
 Short term, set up an infrastructure for sending channel updates through trusted private
 relay networks.

 Long term, educate users on the risks associated with using third-party conduits (appendix
 C) and channels, and investigate designs that can help prevent the abuse of users’ token
 approvals.

 Trail of Bits 31 OpenSea Seaport Security Assessment
 PUBLIC

 10. Lack of a zero-value check in the validate function

 Severity: Low Difficulty: Medium

 Type: Timing Finding ID: TOB-OSC-10

 Target: Consideration.sol

 Description
 Certain token transfer functions have an assertion, _assertNonZeroAmount , that
 reverts if the token amount is set to zero. However, the validate function does not check
 whether an order’s token amount is set to zero and will validate such an order, returning a
 boolean value of true .

 This lack of validation is particularly problematic for users whose orders include ether,
 ERC20 tokens, or ERC1155 tokens; this is because an order with an amount of zero would
 appear to be valid but would cause those tokens’ respective transfer functions to revert.
 The “valid” order would also be stored on-chain, misleading users who rely on the on-chain
 data to identify transactions that no longer require signature verification (and causing them
 to waste gas).

 function _assertNonZeroAmount (uint256 amount) internal pure {
 if (amount == 0) {

 revert MissingItemAmount();
 }

 }

 Figure 10.1: The _assertNonZeroAmount function

 Recommendations
 Short term, add a check for zero-value token amounts to the validate function.
 Alternatively, if the validate function is currently behaving as intended, clearly document
 its expected behavior for users and third-party integrations.

 Long term, review the system’s functions to ensure that their data validation behavior is
 consistent.

 Trail of Bits 32 OpenSea Seaport Security Assessment
 PUBLIC

 11. fulfillAdvancedOrder may revert and prevent order fulfillment

 Severity: Undetermined Difficulty: Medium

 Type: Data Validation Finding ID: TOB-OSC-11

 Target: Consideration.sol

 Description
 The functions _getFraction and _locateCurrentAmount are used in the execution of
 advanced orders to facilitate partial orders and the use of floating prices. The use of
 fractions or floating prices may cause arithmetic overflows in checked blocks, leading to
 runtime panics and causing fulfillAdvancedOrder to revert.

 An overflow could cause a fulfillable order to suddenly become unfulfillable; every attempt
 to fill the order would then cause a revert, violating user expectations. Notably, an attacker
 could cause an overflow by using a fractional amount scaled to nearly the maximum value
 of a 256-bit unsigned integer; alternatively, he or she could set an end price that would
 cause an overflow as the order approached its expiration.

 function _getFraction (
 uint256 numerator ,
 uint256 denominator ,
 uint256 value

) internal pure returns (uint256 newValue) {
 [...]
 uint256 valueTimesNumerator = value * numerator;
 [...]

 Figure 11.1: The _getFraction function

 function _locateCurrentAmount(
 uint256 startAmount,
 uint256 endAmount,
 uint256 elapsed,
 uint256 remaining,
 uint256 duration,
 bool roundUp

) internal pure returns (uint256) {
 [...]

 uint256 totalBeforeDivision = ((startAmount * remaining) +
 (endAmount * elapsed) +
 extraCeiling);

 [...]

 Figure 11.2: The _locateCurrentAmount function

 Trail of Bits 33 OpenSea Seaport Security Assessment
 PUBLIC

 Recommendations
 Short term, investigate the impact of reverts caused by overflows in checked blocks and
 determine whether more input validation is required. Document this overflow behavior for
 external parties.

 Long term, write unit and fuzz tests that trigger this behavior. Then, either develop a patch
 for the issue or update the documentation to clarify that reverts are expected in certain
 edge cases.

 Trail of Bits 34 OpenSea Seaport Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 35 OpenSea Seaport Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 36 OpenSea Seaport Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Decentralization The presence of a decentralized governance structure for mitigating
 insider threats and managing risks posed by contract upgrades

 Documentation The presence of comprehensive and readable codebase documentation

 Front-Running
 Resistance

 The system’s resistance to front-running attacks

 Low-Level
 Manipulation

 The justified use of inline assembly and low-level calls

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Trail of Bits 37 OpenSea Seaport Security Assessment
 PUBLIC

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 38 OpenSea Seaport Security Assessment
 PUBLIC

 C. Risks Associated with Third-Party Conduits

 Third parties can deploy conduits, which control asset transfers. Third-party conduits
 increase the risk of a compromise of user funds, as their owners could add malicious or
 vulnerable channels. Users should not interact with conduits without thorough
 investigation to ensure that the conduits’ channels do not contain security vulnerabilities
 and that the conduits’ owners are properly managed by a multisignature wallet or a
 decentralized autonomous organization (DAO). Users should verify that conduit owners do
 the following:

 ● Conduct third-party security reviews of channels. Before a channel is added to a
 conduit, it should undergo a comprehensive security review by a third-party auditor.

 ● Document the channel update process. Conduit owners should justify why
 channels are added and removed and should create a robust pipeline to prevent
 malicious activity. For each conduit, a list of channels, their contract addresses, and
 background documents (e.g., audit reports and governance form discussions)
 should be readily available.

 ● Address Slither ’s findings. Slither, a Solidity static analysis tool, will catch many
 common security findings and should be integrated in the channel development
 process.

 Trail of Bits 39 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/crytic/slither

 D. Echidna Integration

 During the audit, we integrated Echidna with the codebase to implement invariant checks.
 This practice allowed us to identify system properties and implement fuzz tests, which
 automatically generate random inputs to call smart contracts.

 Di�erential Testing
 Differential Echidna tests are used to check equivalence in assembly blocks. In running the
 ExtcodeSize testing contract (figure E.1), we compared the result of the original line of
 assembly with a simplified implementation. In the test_equivalence function (the only
 publicly callable function in these contracts), there is a 50% chance that tokenAddress is
 equivalent to zero or a newly deployed TestToken . With this test, Echidna will explore two
 states—contracts that have a nonzero size and contracts that have a size of zero—to try to
 find an input that breaks equivalence:

 pragma solidity 0.8.13;
 import "../../test/TestERC20.sol" ;
 // echidna-test-2.0 . --contract ExtcodeSize --test-mode assertion
 contract ExtcodeSize {

 function original_extcodesize (address tokenAddress , bool success) private view
 returns (bool result){

 assembly {
 result := iszero(and(iszero(iszero(extcodesize(tokenAddress))),

 success))
 }

 }
 function simplified_extcodesize (address tokenAddress , bool success) private

 view returns (bool result) {
 assembly {

 result := or(iszero(extcodesize(tokenAddress)), iszero(success))
 }

 }
 function test_equivalence (uint128 num , bool success) public {

 address tokenAddress = address (0);
 if (num% 2 == 0) {

 tokenAddress = address (new TestERC20());
 }
 assert(original_extcodesize(tokenAddress, success) ==

 simplified_extcodesize (tokenAddress, success));
 }

 }

 Figure D.1: The ExtcodeSize.sol Echidna test

 The highlighted assertion calls the two functions with the same parameters and asserts
 that the returned values are equivalent. This pattern can be extended to tests that
 compare the results of a series of functions outside of single-line assembly.

 Trail of Bits 40 OpenSea Seaport Security Assessment
 PUBLIC

 Stateful End-to-End Tests
 As opposed to stateless tests, which allow Echidna to explore a system’s state only over a
 single transaction, stateful end-to-end tests allow Echidna to explore a much wider range of
 contract behavior and to detect violations that require the state to change across multiple
 interactions. We used these tests to test properties against a deployed version of the
 Consideration contracts by calling various permutations of functions to reach different
 code paths.

 To guide Echidna to produce valid orders, we derived order information from a seed to
 produce quasi-random orders. Echidna explored six routes, consisting of transfers between
 ether, ERC721, ERC1155, and ERC20 tokens:

 1. Ether to ERC1155

 2. Ether to ERC721

 3. ERC20 to ERC721

 4. ERC20 to ERC1155

 5. ERC721 to ERC20

 6. ERC115 to ERC20

 There are multiple consideration and offer items for advanced orders, but only one item
 for basic orders. For partial orders, the fuzzer provides a fractional amount, filling a portion
 of the available number of consideration and offer items. To simplify testing, each order is
 formed and the corresponding tokens are minted to the buyer and seller. The order is then
 processed by Consideration , and, finally, the invariants that represent how much each
 account should receive of each token are validated.

 function testFulfillAdvancedOrder (bytes32 seed , uint120 numerator , uint120

 denominator) public payable {

 // FULL_OPEN: 0, PARTIAL_OPEN: 1

 uint orderType = uint (seed) % 2 ;

 // For partial orders we validate the fraction

 // to avoid BadFraction and InexactFraction reverts

 if (orderType == 1) {

 uint amount = uint256 (uint112 (uint256 (seed)));

 require (numerator < denominator && numerator != 0);

 uint256 valueTimesNumerator = amount * numerator;

 bool exact ;

 uint newValue ;

 Trail of Bits 41 OpenSea Seaport Security Assessment
 PUBLIC

 assembly {

 newValue := div(valueTimesNumerator, denominator)

 exact := iszero(mulmod(amount, numerator, denominator))

 }

 require (exact);

 }

 // Evenly distribute route between 0 and 5

 uint256 route = uint (seed) % (6);

 (OrderParameters memory orderParams, uint totalTokens , uint totalItems , uint

 uniqueId) = createOrderParameters(_seller, _buyer, seed, route, false);

 orderParams.conduitKey = _conduitKeyActive;

 // Sign order on behalf of seller

 uint256 nonce = _opensea.getNonce(_seller);

 bytes32 orderHash =

 _opensea.getOrderHash(convertOrderParametersToOrderComponents(orderParams, nonce));

 (, bytes32 domainSeparator ,) = _opensea.information();

 bytes memory sig = signOrder(orderHash, domainSeparator);

 // Send entire balance for ether orders (should refund)

 uint offerItemType = uint (orderParams.offer[0].itemType);

 uint value = offerItemType < 2 ? address (this).balance : 0 ;

 AdvancedOrder memory order;

 if (orderType == 0) /*FULL_OPEN*/ {

 order = AdvancedOrder({

 parameters: orderParams,

 signature: sig,

 numerator: uint120 (1),

 denominator: uint120 (1),

 extraData: abi.encode(bytes32 (0))

 });

 } else /*PARTIAL_OPEN*/ {

 order = AdvancedOrder({

 parameters: orderParams,

 signature: sig,

 numerator: numerator,

 denominator: denominator,

 extraData: abi.encode(bytes32 (0))

 });

 // Scale order to fill fractional amount

 uint remaining = totalTokens - ((totalTokens * numerator) / denominator);

 totalTokens -= remaining;

 Trail of Bits 42 OpenSea Seaport Security Assessment
 PUBLIC

 pendingPartialOrders[pendingPartialOrderIndex] = order;

 pendingPartialOrdersAmount[pendingPartialOrderIndex++] = remaining;

 }

 // This has no effect without providing a merkle root

 CriteriaResolver[] memory resolvers = new CriteriaResolver[](0);

 try _opensea.fulfillAdvancedOrder{value: value}(order, resolvers,

 _conduitKeyActive) returns (bool res) {

 assert(res);

 }

 catch Panic(uint reason) {

 emitAndFail("_opensea.fulfillAdvancedOrder FAILED" , route, reason);

 }

 // Check that buyers and sellers received expected amounts

 _assertFundsReceived(_seller, _buyer, route, totalTokens, totalItems, uniqueId);

 }

 Figure D.2: Advanced order fuzzing

 After fulfilling orders, the anticipated quantity and identifier (the ID for ERC1155 and
 ERC721) of tokens for the buyer and seller are checked:

 function _assertFundsReceived(address seller, address buyer, uint256 route, uint256
 totalTokens, uint256 totalItems, uint uid) internal {

 if (route == 0) /*NATIVE TO ERC721*/ {
 if (seller. balance < totalTokens) {

 emitAndFail("/*NATIVE TO ERC721*/ seller" , seller. balance , totalTokens);
 }
 if (_erc721.balanceOf(buyer) < totalItems) {

 emitAndFail("/*NATIVE TO ERC721*/ buyer" , _erc721.balanceOf(buyer),
 totalItems);

 }
 } else if (route == 1) /*NATIVE TO ERC1155*/ {

 if (seller. balance < totalTokens) {
 emitAndFail("/*NATIVE TO ERC1155*/ seller" , seller. balance ,

 totalTokens);
 }
 if (_erc1155.balanceOf(buyer, uid) < totalTokens) {

 emitAndFail("/*NATIVE TO ERC1155*/ buyer" , _erc1155.balanceOf(buyer,
 uid), totalTokens);

 }
 } else if (route == 2) /*ERC20 TO ERC721*/ {

 if (_erc20.balanceOf(seller) < totalTokens) {
 emitAndFail("/*ERC721 TO ERC20 */ FAILED" , _erc20.balanceOf(seller),

 totalTokens);
 }
 if (_erc721.balanceOf(buyer) < totalItems) {

 emitAndFail("/*ERC721 TO ERC20 */ FAILED" , _erc721.balanceOf(buyer),

 Trail of Bits 43 OpenSea Seaport Security Assessment
 PUBLIC

 totalItems);
 }

 } else if (route == 3) /*ERC20 TO ERC1155*/ {
 if (_erc1155.balanceOf(buyer, uid) < totalTokens) {

 emitAndFail(" /*ERC115 TO ERC20 */ buyer" , _erc1155.balanceOf(buyer,
 uid), totalTokens);

 }
 if (_erc20.balanceOf(seller) < totalTokens) {

 emitAndFail(" /*ERC115 TO ERC20 */ seller" , _erc20.balanceOf(seller),
 totalTokens);

 }
 } else if (route == 4) /*ERC721 TO ERC20 */ {

 if (_erc20.balanceOf(buyer) < totalTokens) {
 emitAndFail("/*ERC20 TO ERC721*/ FAILED" , _erc20.balanceOf(buyer),

 totalTokens);
 }
 if (_erc721.balanceOf(seller) < totalItems) {

 emitAndFail("/*ERC20 TO ERC721*/ FAILED" , _erc721.balanceOf(seller),
 totalItems);

 }
 } else if (route == 5) /*ERC115 TO ERC20 */ {

 if (_erc1155.balanceOf(seller, uid) < totalTokens) {
 emitAndFail(" /*ERC20 TO ERC1155*/ seller" , _erc1155.balanceOf(seller,

 uid), totalTokens);
 }
 if (_erc20.balanceOf(buyer) < totalTokens) {

 emitAndFail(" /*ERC20 TO ERC1155*/ buyer" , _erc20.balanceOf(buyer),
 totalTokens);

 }
 }

 }

 Figure D.3: Validating receipt of funds

 The setup in figure E.4 allows Echidna to target the order validation flow, which creates an
 order with the adequate parameters, validates the order, and asserts that the order status
 was validated and not canceled:

 function testValidate (bytes32 seed) public override {
 Order[] memory orders = new Order[](1);
 orders[0] = Order({

 parameters: createOrderParameters(seed, uint256 (seed)),
 signature: DEFAULT_SIG

 });

 bool res = _opensea.validate(orders);
 assert(res);

 bytes32 orderHash =
 _opensea.getOrderHash(convertOrderParametersToOrderComponents(orders[0].parameters))
 ;

 assert(orderHash != bytes32 (0));

 Trail of Bits 44 OpenSea Seaport Security Assessment
 PUBLIC

 (bool valid , bool cancelled , uint256 filled , uint256 size) =
 _opensea.getOrderStatus(orderHash);

 assert(valid);
 assert(!cancelled);

 }

 Figure D.4: Example of testValidate preconditions and postconditions

 Further Development
 We recommend continuing to add invariants and increasing the code coverage of property
 testing by doing the following:

 ● Generate random recipients and check that they receive consideration items.

 ● Create floating orders, force the block time forward, and assert that they are
 correctly filled.

 ● Add property testing for matchOrders , matchAdvancedOrders , and
 matchAvailableAdvancedOrders .

 ● Write helper functions to generate Merkle roots to conduct property testing of the
 criteria resolver functionality.

 ● Incorporate zone order validation into the property tests.

 Trail of Bits 45 OpenSea Seaport Security Assessment
 PUBLIC

 E. Slither Script

 Tokens transferred by the Seaport exchange may have hooks, and the contracts with which
 it interacts may have callbacks. Because it is important that reentrant calls do not
 unexpectedly update the state of the exchange during inner calls, changing the execution
 result, functions that make external calls use _setReentrancyGuard . This guard creates a
 global lock on a contract, preventing multiple interactions with state-modifying external
 functions in the same transaction.

 The following script can be used to explore the paths of all Seaport entry points and to
 verify that the reentrancy guard is set correctly by tracking its value on every node.

 The script checks for the following issues:

 ● A value (e.g., _NOT_ENTERED) is written to _reentrancyGuard multiple times in the
 same path.

 ● A control flow structure (e.g., an if , then , or else statement) results in different
 _reentrancyGuard values.

 ● _reentrancyGuard has different values in the return statements of an internal call.

 ● An entry point causes _reentrancyGuard to be set to _ENTERED , trapping the
 contract.

 import sys
 from enum import Enum
 from typing import Optional, Dict, Set, Tuple

 from slither import Slither
 from slither.core.cfg.node import Node
 from slither.core.declarations import Function
 from slither.slithir.operations import Assignment, InternalCall, HighLevelCall,
 LowLevelCall

 # Known limitations
 # - Constructor and modifiers are not handled
 # - Recursion, or function that do not return (or always revert) are not supported
 # - Function pointers are not supported
 # - Writing _reentrancyGuard in assembly is not supported

 class Entered (Enum):
 NOT_SET = 0
 NOT_ENTERED = 1
 ENTERED = 2

 # pylint: disable=too-many-branches

 Trail of Bits 46 OpenSea Seaport Security Assessment
 PUBLIC

 def _transfer_function (
 node: Node, entered: Optional[Entered], callstack: Set[Function], results:

 Set[str]
) -> Entered:

 """
 Iterate over the IRs of a given block

 :param node:
 :type node:
 :param entered:
 :type entered:
 :param callstack:
 :type callstack:
 :return:
 :rtype:
 """
 for ir in node.irs:

 if isinstance (ir, Assignment):
 if ir.lvalue.name == "_reentrancyGuard" and ir.rvalue.name ==

 "_NOT_ENTERED" :
 if entered == Entered.NOT_ENTERED:

 results.add(
 f "_NOT_ENTERED is written two times in { node }

 ({ node.source_mapping_str })"
)

 entered = Entered.NOT_ENTERED
 if ir.lvalue.name == "_reentrancyGuard" and ir.rvalue.name ==

 "_ENTERED" :
 if entered == Entered.ENTERED:

 results.add(
 f "_ENTERED is written two times in { node }

 ({ node.source_mapping_str })"
)

 entered = Entered.ENTERED

 if isinstance (ir, InternalCall):
 call_state: Dict[Node, Entered] = {}

 if ir.function in callstack:
 print (

 f "The script does not handle codebases with recursive calls
 ({ ir.function } in { node } ({ node.source_mapping_str })")

 sys.exit(- 1)
 _explore(

 ir.function.entry_point,
 call_state,
 callstack | {ir.function},
 results,
 init_value=entered,

)

 state_after_internal_call: Optional[Entered] = None
 for node_function in ir.function.nodes:

 Trail of Bits 47 OpenSea Seaport Security Assessment
 PUBLIC

 if node_function.will_return:
 candidate = call_state[node_function]
 if (

 state_after_internal_call is not None
 and candidate != state_after_internal_call

):
 results.add(

 f "The function { ir.function }
 ({ ir.function.source_mapping_str }) return different state "

)
 state_after_internal_call = candidate

 if state_after_internal_call is None :
 print (f "Can't propagage info because { ir.function } always reverts")
 sys.exit(- 1)

 entered = state_after_internal_call

 if (
 isinstance (ir, (HighLevelCall, LowLevelCall))
 and entered != Entered.ENTERED
 and ir.can_reenter()

):
 results.add(

 f " { node } ({ node.source_mapping_str }) is not protected by the
 reentrancy guard"

)

 assert entered
 return entered

 def _merge_fathers (
 node: Node, state: Dict[Node, Entered], results: Set[str]

) -> Tuple[bool , Optional[Entered]]:
 """
 Merge the value from the fathers

 :param node: Given node
 :type node:
 :param state: Curretn state
 :type state:
 :return: (bool, Entered): if not all the fathers were explored, merged state
 :rtype:
 """
 state_from_fathers: Optional[Entered] = None
 no_fix_point = False
 for father in node.fathers:

 if father not in state:
 no_fix_point = True

 else :
 candidate = state[father]

 if state_from_fathers is not None and candidate != state_from_fathers:
 results.add(

 Trail of Bits 48 OpenSea Seaport Security Assessment
 PUBLIC

 f "Not all fathers have the same state { node }
 ({ node.source_mapping_str })"

)

 state_from_fathers = candidate
 return no_fix_point, state_from_fathers

 def _explore (
 node: Node,
 state: Dict[Node, Entered],
 callstack: Set[Function],
 results: Set[str],
 init_value: Optional[Entered] = None ,

) -> None :
 """
 Explore iterate over all the nodes and propagate the value assigned to

 _NOT_ENTERED
 The fix point is reached on a node if
 - It was already explored
 - All fathers were explored
 - The propagation on the IR did not lead to new info

 Because writing to _reentrancyGuard are simple assignement, outside of loop, the
 convergence is fast

 During the exploration, the function look for:
 - If _reentrancyGuard is written to _NOT_ENTERED in a path where it already has

 this value (same for _ENTERED)
 - If there is a control flow structure (if/then/else, ..), _reentrancyGuard must

 have only 1 possible value
 - Similarly, on the internal call, all the return statement must leave

 _reentrancyGuard with the same value

 :param node: Entry point
 :type node:
 :param state: Current value of _reentrancyGuard
 :type state:
 :param init_value: Initial _reentrancyGuard value (only for internal call)
 :type init_value:
 :return:
 :rtype:
 """

 original_entered_end_value: Optional[Entered] = None
 no_fix_point = False

 if node in state:
 original_entered_end_value = state[node]

 else :
 no_fix_point = True

 (no_fix_point_father, entered) = _merge_fathers(node, state, results)

 Trail of Bits 49 OpenSea Seaport Security Assessment
 PUBLIC

 no_fix_point |= no_fix_point_father

 if init_value:
 entered = init_value

 entered = _transfer_function(node, entered, callstack, results)
 state[node] = entered

 if original_entered_end_value is not None and original_entered_end_value !=
 entered:

 no_fix_point = True

 if no_fix_point:
 for son in node.sons:

 _explore(son, state, callstack, results)

 def run_analysis (function: Function) -> None :
 if not function.is_implemented:

 return
 state: Dict[Node, Entered] = {}

 results: Set[str] = set ()

 _explore(function.entry_point, state, {function}, results,
 init_value=Entered.NOT_SET)

 # Check that all the return statement ends with NOT_SET or _NOT_ENTERED
 for node in function.nodes:

 if node.will_return:
 entered = state[node]

 if entered == Entered.ENTERED:
 results.add(f "Function { function } ends in the entered state")

 if results:
 print (f "# In { function.canonical_name } :")
 for r in results:

 print (r)

 def main () -> None :
 sl = Slither("." , ignore_compile= True)

 contracts = sl.get_contract_from_name("Consideration")
 if not contracts:

 print ("Consideration not found")
 for contract in contracts:

 for function in contract.functions_entry_points:
 run_analysis(function)

 Trail of Bits 50 OpenSea Seaport Security Assessment
 PUBLIC

 if __name__ == "__main__" :
 main()

 Figure E.1: The reentrancy guard verification script

 Because this script currently does not raise any alarms, we created a test case (figure C.2)
 to demonstrate its utility:

 contract Consideration {

 uint256 internal constant _NOT_ENTERED = 1 ;
 uint256 internal constant _ENTERED = 2 ;

 uint256 internal _reentrancyGuard ;

 function set_not () internal {
 _reentrancyGuard = _NOT_ENTERED;

 }

 function can_return_entered (bool b) public {
 _reentrancyGuard = _ENTERED;
 if (b){

 set_not();
 }

 }

 function can_set_two_times (bool b) public {
 set_not();
 set_not();

 }

 function different_return (bool b) internal {
 if (b){

 set_not();
 return ;

 }
 }

 function f () public {
 different_return(true);

 }

 function let_variable_set_to_entered_state () public {
 _reentrancyGuard = _ENTERED;

 }

 function protected_call () public {
 _reentrancyGuard = _ENTERED;
 (msg.sender).call("");
 _reentrancyGuard = _NOT_ENTERED;

 Trail of Bits 51 OpenSea Seaport Security Assessment
 PUBLIC

 }

 function unprotected_call () public {
 (msg.sender).call("");

 }
 }

 Figure E.2: The failing test contract used to run the reentrancy verification script

 # In Consideration.can_return_entered(bool):
 Not all fathers have the same state END_IF (test.sol#15-17)
 Function can_return_entered ends in the entered state
 # In Consideration.can_set_two_times(bool):
 _NOT_ENTERED is written two times in EXPRESSION _reentrancyGuard =
 _NOT_ENTERED (test.sol#10)
 # In Consideration.f():
 The function different_return (test.sol#25-30) return different state
 # In Consideration.let_variable_set_to_entered_state():
 Function let_variable_set_to_entered_state ends in the entered state
 # In Consideration.unprotected_call():
 EXPRESSION (msg.sender).call() (test.sol#49) is not protected by the
 reentrancy guard

 Figure E.3: The script’s output for this failing test contract

 Trail of Bits 52 OpenSea Seaport Security Assessment
 PUBLIC

 F. Transaction Traces

 We set up an interactive JavaScript console to aid in determining the system’s memory and
 stack inputs. We ran a local hardhat node in the background and deployed all the required
 contracts before launching the console. We wrote helper functions that provided sensible
 default values for orders and used the debug_traceTransaction JSON RPC method to
 generate traces of transactions that attempted to validate or fulfill orders. These
 transaction traces provided snapshots of the stack and memory after every opcode, which
 aided our investigation of the assembly code. We identified rare opcodes (SSTORE, SLOAD,
 CALLER, etc.) first and mapped their locations in the source code to provide landmarks that
 aided us in identifying the most high-risk assembly in the trace.

 By mapping the source code to memory and stack snapshots, we were able to analyze the
 validity of the system’s handling of memory. Assembly code that operated in reserved slots
 of memory or that overwrote and later restored memory slots received special attention.

 For example, in _getOrderHash , some memory slots were overwritten to generate type
 hashes, avoiding unnecessary memory allocation to preserve gas. The trace of one of these
 hashes, shown below, helped us verify that memory was being correctly overwritten and
 then restored.

 {
 "index": 1147,
 "pc": 16611,
 "op": "SHA3",
 "gas": 26039,
 "gasCost": 36,
 "depth": 1,
 "stack": [
 "0044",
 "0001",
 "0001",
 "00",
 "000000000000000000000000627306090abab3a6e1400e9345bc60c78a8bef57",
 "0064",
 "00a4",
 "000f3a",
 "0001",
 "000630",
 "0001",
 "0001c0",
 "0080",
 "0020",
 "0003c0",
 "00c0",
 "0020",
 "0003c0"

 Trail of Bits 53 OpenSea Seaport Security Assessment
 PUBLIC

],
 "memory": [
 "000000000000000000000000627306090abab3a6e1400e9345bc60c78a8bef57",
 "0002",
 "0003c0",
 "00",
 "000000000000000000000000627306090abab3a6e1400e9345bc60c78a8bef57",
 "00",
 "0001e0",
 "0002c0",
 "0001",
 "00626aa1ad",
 "00626aafbd",
 "00",
 "00",
 "00",
 "0001",
 "0001",
 "000220",
 "0002",
 "000000000000000000000000f12b5dd4ead5f743c6baa640b0216200e89b60da",
 "00",
 "0001",
 "0001",
 "0001",
 "000300",
 "0001",
 "0000000000000000000000008cdaf0cd259887258bc13a92c0a6da92698644c0",
 "00",
 "001bc16d674ec80000",
 "000de0b6b3a7640000",
 "000000000000000000000000627306090abab3a6e1400e9345bc60c78a8bef57",
 "8c4fcd46c528a1a5c16be866d612801c8fd7aad1a210ab7f46cc8a3196c7e107"

],
 "storage": {
 "00":

 "0001",
 "ded101565a23504cd4339827add3a8b16f30ceff2912c1b6ef015848eade7942":

 "0001"
 }

 }

 Figure F.1: A snapshot of the machine state before the keccak256 hash on line 398 of
 ConsiderationInternalView.sol

 Due to time constraints, this tooling is incomplete and was used only to investigate certain
 transaction types. Given more time, we would have taken the following steps to make
 transaction traces easier to generate:

 ● Refactor useful utilities such as getAndVerifyOrderHash out of test/index.js
 so that they could be available for reuse by other tools, including an interactive
 console.

 Trail of Bits 54 OpenSea Seaport Security Assessment
 PUBLIC

 ● Use the test utilities to create a wrapper for each external method of
 Consideration . The wrapper, which would be called without arguments, would set
 up accounts and the contract’s state (e.g., by minting and approving required
 tokens) and would set default arguments for a successful call. It would then
 generate and save the transaction trace to a file for further review.

 ● Accept parameters allowing developers to selectively override certain parameters to
 easily explore the transaction traces of edge cases and failure modes.

 The core function that generates traces is debug_traceTransaction , which provides the
 target transaction hash as the first and only parameter. An index was added to each EVM
 snapshot to make it easier to map opcode executions from the trace to locations in the
 source code. This function can be incorporated elsewhere in the codebase to help
 investigate EVM internals:

 const traceTx = async (txHash, filename) => {
 await provider.send("debug_traceTransaction" , [txHash]). then ((res) => {
 if (filename) {
 const indexedRes = {
 ...res,
 structLogs : res.structLogs. map ((structLog, index) => ({
 index ,
 ...structLog,

 })),
 };
 fs.writeFileSync(filename, JSON.stringify(indexedRes, null , 2));

 } else {
 log (res);

 }
 });

 };

 Figure F.2: The utility for generating a transaction trace

 Trail of Bits 55 OpenSea Seaport Security Assessment
 PUBLIC

 G. System Invariants

 Seaport
 The Seaport system relies on various invariants regarding the fulfillment and validation of
 orders.

 Validating Orders
 ● The status of a canceled order should be invalid and canceled.

 ● A call to the validate function on a restricted order should revert if the caller is not
 authorized to match the order.

 Fulfilling Orders
 ● If the offerer (seller) of an order does not own all of the offer items, the fulfillment

 transaction should revert.

 ● If the buyer of an order does not own the consideration item(s), the fulfillment
 transaction should revert.

 ● For each order route type, the corresponding consideration item(s) should be sent
 to the buyer, and the offer item(s), to the seller.

 ● When a full order is fulfilled, all of its consideration items should be transferred.

 ● When a partial order is fulfilled, a portion of the consideration and offer items
 should be transferred, and the remaining items should be transferred in a separate
 transaction (or separate transactions).

 ● Items that have not been offered should not be transferred in a fulfillment
 transaction.

 Conduit – OpenSea
 ● Unless the execute function reverts, it should return the correct function selector.

 ● A successful call to the execute function should result in a transfer of ERC20,
 ERC721, or ERC1155 tokens.

 ● An attempt to transfer more than one ERC721 item through a single conduit should
 cause the execute function to revert.

 ● The execute function should revert if it is called on a conduit that does not exist.

 ConduitController – OpenSea
 ● The following functions should not revert when called on an existing conduit:

 Trail of Bits 56 OpenSea Seaport Security Assessment
 PUBLIC

 ○ getPotentialOwner

 ○ getChannelStatus

 ○ getTotalChannels

 ○ getChannel

 ○ getChannels

 ○ acceptOwnership

 ○ ownerOf

 ○ getKey

 ○ updateChannel

 ● Only conduit owners should be able to update channels.

 ● A transfer of a conduit’s ownership to address(0) should always revert.

 ● A transfer of a conduit’s ownership to a valid address should always result in an
 update to _conduits[conduit].potentialOwner .

 ● The cancellation of a conduit-ownership transfer should
 cause _conduits[conduit].potentialOwner to be zeroed out.

 ● Only the prospective new owner of a conduit can call acceptOwnership .

 ● When a conduit’s new owner accepts the ownership transfer,
 _conduits[conduit].potentialOwner should be zeroed out, and
 _conduits[conduit].owner should be set to the new owner’s address.

 ● A call to the getChannel function to retrieve the number of a channel in a conduit
 should revert if the function is called with a channel index that exceeds the total
 number of channels in the conduit .

 ● The size of the getTotalChannels function’s return value should always be equal
 to the length of the list returned by getChannels .

 Trail of Bits 57 OpenSea Seaport Security Assessment
 PUBLIC

 H. Incident Response Recommendations

 In this section, we provide recommendations around the formulation of an incident
 response plan.

 Identify who (either specific people or roles) is responsible for carrying out the
 mitigations (deploying smart contracts, pausing contracts, upgrading the front end,
 etc.).

 ● Specifying these roles will strengthen the incident response plan and ease the
 execution of mitigating actions when necessary.

 Document internal processes for situations in which a deployed remediation does
 not work or introduces a new bug.

 ● Consider adding a fallback scenario that describes an action plan in the event of a
 failed remediation.

 Clearly describe the intended process of contract deployment.

 Consider whether and under what circumstances OpenSea will make affected users
 whole after certain issues occur.

 ● Some scenarios to consider include an individual or aggregate loss, a loss resulting
 from user error, a contract flaw, and a third-party contract flaw.

 Document how OpenSea plans keep up to date on new issues, both to inform future
 development and to secure the deployment toolchain and the external on-chain and
 off-chain services that the system relies on.

 ● For each language and component, describe noteworthy sources for vulnerability
 news. Subscribe to updates for each source. Consider creating a special private
 Discord channel with a bot that will post the latest vulnerability news; this will help
 the team keep track of updates all in one place. Also consider assigning specific
 team members to keep track of the vulnerability news of a specific component of
 the system.

 Consider scenarios involving issues that would indirectly affect the system.

 Determine when and how the team would reach out to and onboard external parties
 (auditors, affected users, other protocol developers, etc.) during an incident.

 ● Some issues may require collaboration with external parties to efficiently remediate
 them.

 Trail of Bits 58 OpenSea Seaport Security Assessment
 PUBLIC

 Define contract behavior that is considered abnormal for off-chain monitoring.

 ● Consider adding more resilient solutions for detection and mitigation, especially in
 terms of specific alternate endpoints and queries for different data as well as status
 pages and support contacts for affected services.

 Combine issues and determine whether new detection and mitigation scenarios are
 needed.

 Perform periodic dry runs of specific scenarios in the incident response plan to find
 gaps and opportunities for improvement and to develop muscle memory.

 ● Document the intervals at which the team should perform dry runs of the various
 scenarios. For scenarios that are more likely to happen, perform dry runs more
 regularly. Create a template to be filled in after a dry run to describe the
 improvements that need to be made to the incident response.

 Trail of Bits 59 OpenSea Seaport Security Assessment
 PUBLIC

 I. Token Integration Checklist

 The following checklist provides recommendations for interactions with arbitrary tokens.
 Every unchecked item should be justified, and its associated risks, understood. For an
 up-to-date version of the checklist, see crytic/building-secure-contracts .

 For convenience, all Slither utilities can be run directly on a token address, such as the
 following:

 slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken --erc erc20
 slither-check-erc 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d KittyCore --erc erc721

 To follow this checklist, use the below output from Slither for the token:

 slither-check-erc [target] [contractName] [optional: --erc ERC_NUMBER]
 slither [target] --print human-summary
 slither [target] --print contract-summary
 slither-prop . --contract ContractName # requires configuration, and use of Echidna
 and Manticore

 General Considerations
 ❏ The contract has a security review. Avoid interacting with contracts that lack a

 security review. Check the length of the assessment (i.e., the level of effort), the
 reputation of the security firm, and the number and severity of the findings.

 ❏ You have contacted the developers. You may need to alert their team to an
 incident. Look for appropriate contacts on blockchain-security-contacts .

 ❏ They have a security mailing list for critical announcements. Their team should
 advise users (like you!) when critical issues are found or when upgrades occur.

 Contract Composition
 ❏ The contract avoids unnecessary complexity. The token should be a simple

 contract; a token with complex code requires a higher standard of review. Use
 Slither’s human-summary printer to identify complex code.

 ❏ The contract uses SafeMath . Contracts that do not use SafeMath require a higher
 standard of review. Inspect the contract by hand for SafeMath usage.

 ❏ The contract has only a few non-token-related functions. Non-token-related
 functions increase the likelihood of an issue in the contract. Use Slither’s
 contract-summary printer to broadly review the code used in the contract.

 Trail of Bits 60 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md
https://github.com/crytic/slither#tools
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary

 ❏ The token has only one address. Tokens with multiple entry points for balance
 updates can break internal bookkeeping based on the address (e.g.,
 balances[token_address][msg.sender] may not reflect the actual balance).

 Owner Privileges
 ❏ The token is not upgradeable. Upgradeable contracts may change their rules over

 time. Use Slither’s human-summary printer to determine whether the contract is
 upgradeable.

 ❏ The owner has limited minting capabilities. Malicious or compromised owners
 can abuse minting capabilities. Use Slither’s human-summary printer to review
 minting capabilities, and consider manually reviewing the code.

 ❏ The token is not pausable. Malicious or compromised owners can trap contracts
 relying on pausable tokens. Identify pausable code by hand.

 ❏ The owner cannot blacklist the contract. Malicious or compromised owners can
 trap contracts relying on tokens with a blacklist. Identify blacklisting features by
 hand.

 ❏ The team behind the token is known and can be held responsible for abuse.
 Contracts with anonymous development teams or teams that reside in legal shelters
 require a higher standard of review.

 ERC20 Tokens
 ERC20 Conformity Checks

 Slither includes a utility, slither-check-erc , that reviews the conformance of a token to
 many related ERC standards. Use slither-check-erc to review the following:

 ❏ Transfer and transferFrom return a boolean. Several tokens do not return a
 boolean on these functions. As a result, their calls in the contract might fail.

 ❏ The name , decimals , and symbol functions are present if used. These functions
 are optional in the ERC20 standard and may not be present.

 ❏ Decimals returns a uint8 . Several tokens incorrectly return a uint256 . In such
 cases, ensure that the value returned is below 255.

 ❏ The token mitigates the known ERC20 race condition . The ERC20 standard has a
 known ERC20 race condition that must be mitigated to prevent attackers from
 stealing tokens.

 Slither includes a utility, slither-prop , that generates unit tests and security properties
 that can discover many common ERC flaws. Use slither-prop to review the following:

 Trail of Bits 61 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/ERC-Conformance
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation

 ❏ The contract passes all unit tests and security properties from slither-prop .
 Run the generated unit tests and then check the properties with Echidna and
 Manticore .

 Risks of ERC20 Extensions

 The behavior of certain contracts may differ from the original ERC specification. Conduct a
 manual review of the following conditions:

 ❏ The token is not an ERC777 token and has no external function call in
 transfer or transferFrom . External calls in the transfer functions can lead to
 reentrancies.

 ❏ Transfer and transferFrom should not take a fee. Deflationary tokens can lead
 to unexpected behavior.

 ❏ Potential interest earned from the token is taken into account. Some tokens
 distribute interest to token holders. This interest may be trapped in the contract if
 not taken into account.

 Token Scarcity
 Reviews of token scarcity issues must be executed manually. Check for the following
 conditions:

 ❏ The supply is owned by more than a few users. If a few users own most of the
 tokens, they can influence operations based on the tokens’ repartition.

 ❏ The total supply is sufficient. Tokens with a low total supply can be easily
 manipulated.

 ❏ The tokens are located in more than a few exchanges. If all the tokens are in one
 exchange, a compromise of the exchange could compromise the contract relying on
 the token.

 ❏ Users understand the risks associated with a large amount of funds or flash
 loans. Contracts relying on the token balance must account for attackers with a
 large amount of funds or attacks executed through flash loans.

 ❏ The token does not allow flash minting. Flash minting can lead to substantial
 swings in the balance and the total supply, which necessitate strict and
 comprehensive overflow checks in the operation of the token.

 Trail of Bits 62 OpenSea Seaport Security Assessment
 PUBLIC

https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html

 ERC721 Tokens
 ERC721 Conformity Checks

 The behavior of certain contracts may differ from the original ERC specification. Conduct a
 manual review of the following conditions:

 ❏ Transfers of tokens to the 0x0 address revert. Several tokens allow transfers to
 0x0 and consider tokens transferred to that address to have been burned; however,
 the ERC721 standard requires that such transfers revert.

 ❏ safeTransferFrom functions are implemented with the correct signature.
 Several token contracts do not implement these functions. A transfer of NFTs to one
 of those contracts can result in a loss of assets.

 ❏ The name , decimals , and symbol functions are present if used. These functions
 are optional in the ERC721 standard and may not be present.

 ❏ If it is used, decimals returns a uint8(0) . Other values are invalid.

 ❏ The name and symbol functions can return an empty string. This behavior is
 allowed by the standard.

 ❏ The ownerOf function reverts if the tokenId is invalid or is set to a token that
 has already been burned. The function cannot return 0x0 . This behavior is
 required by the standard, but it is not always properly implemented.

 ❏ A transfer of an NFT clears its approvals. This is required by the standard.

 ❏ The token ID of an NFT cannot be changed during its lifetime. This is required
 by the standard.

 Common Risks of the ERC721 Standard

 To mitigate the risks associated with ERC721 contracts, conduct a manual review of the
 following conditions:

 ❏ The onERC721Received callback is taken into account. External calls in the
 transfer functions can lead to reentrancies, especially when the callback is not
 explicit (e.g., in safeMint calls).

 Trail of Bits 63 OpenSea Seaport Security Assessment
 PUBLIC

https://www.paradigm.xyz/2021/08/the-dangers-of-surprising-code

 ❏ When an NFT is minted, it is safely transferred to a smart contract. If there is a
 minting function, it should behave similarly to safeTransferFrom and properly
 handle the minting of new tokens to a smart contract. This will prevent a loss of
 assets.

 ❏ The burning of a token clears its approvals. If there is a burning function, it
 should clear the token’s previous approvals.

 Trail of Bits 64 OpenSea Seaport Security Assessment
 PUBLIC

