13th Munich Earth Skience School Environmental Seismology

Intrinsic attenuation and scattering

Why coda Q does not tell the full story

Using seismic envelopes to separate the effects of source, site and path

Tom Eulenfeld

@trichter on GitHub and in the ObsPy forum

Framework for calculation of receiver functions Deconvolution, moveout, piercing points, ...

obspyh5

Quick & dirty IO of waveforms preserving metadata, HDF5

dv/v with stretching technique

CLI configuration in JSON file easy definition and house-keeping of different correlation and stretching schemes cc shorter than 1d possible

obspycsv

Quick & dirty IO of earthquake catalogs to CSV format

read EVENTTXT

flatten ObsPy catalogs to NumPy arrays

Oopen

Contents

- Introduction
- Motivation
- Qopen method
- Applications
 - USArray
 - Helsinki geothermal stimulation

Introduction

Envelope and radiative transfer

- Phase information in the coda cannot be modeled easily
- Only coda amplitude (resp. energy) is of interest
- Convert waveforms to envelopes (Hilbert transform)
- Transition of wave equation to equation of radiative transfer
- Opens field for Monte-Carlo particle simulations

Intrinsic attenuation vs scattering, about Quality factors

Definition Quality factor

 $Q := 2\pi \frac{\text{total energy}}{\text{energy loss per cyclce}}$ For direct wave: $Q^{-1} = Q_{\rm intr}^{-1} + Q_{\rm scatt}^{-1}$ $Q_{\rm intr}^{-1} = \frac{v}{2\pi f l_{\rm a}} \qquad Q_{\rm scatt}^{-1} = \frac{v}{2\pi f l}$ 30 20 25 0 10 15 5 time (s)

Isotropic vs nonisotropic scattering – transport mean free path

- Mean free path *lo*: Length in which 63% of the wave energy is scattered, mean length between two scattering events
- Transport mean free path *I**: Length in which the propagation direction of 63% of the wave energy becomes independent from its original propagation direction—the wave "forgets" its initial direction due to scattering

$$t_0 = \frac{l_0}{v_s} \qquad t^* = \frac{l^*}{v_s}$$

What about coda Q?

Obviously coda Q is not simply the sum of intrinsic and scattering Q as for the direct wave.

The interpretation of coda Q depends on the scattering regime in the coda!

Scattering regime in the coda – transport mean free time

 $Q_{\text{coda}}^{-1} = Q_{\text{intr}}^{-1} + Q_{\text{scatt}}^{-1}$

t*~7s => diffusion approximation valid

$$Q_{\rm coda}^{-1} = Q_{\rm intr}^{-1}$$

=> scattering regime can be determined with the shape of the envelope

Motivation

Kernels for tomography of coda Q and dv/v observations

Observations of relative velocity change (dv/v) often use the coda

Coda Q can be determined for each station-earthquake pair (similar to first arrivals) and is therefore predestined for tomography.

=> Need for travel time kernel of the coda

=> Estimate of transport mean free path can confine the shape of the kernel (and check validity of assumptions leading to kernel estimate)

Source, Site, Path

Seismogram is convolution of

source function

Х

propagation filter

x site response

- Geometrical spreading
- Attenuation
- Scattering
- Reflections, conversions, ...

- H/V
- Vs30
- kappa

- Moment tensor
- Moment rate function / source displacement spectrum
- Slip distribution

Conventional method to calculate source spectrum

- Take spectra of waveforms around onset
- Correct for geometrical spreading and radiation pattern
- Optimize seismic moment M0, corner fred fc and attenuation Q

- $\Omega(f) = \frac{\Omega_0 e^{-(\pi f n/Q)}}{\left[1 + (f / f_c)^{\gamma n}\right]^{1/\gamma}}$ Abercrombie 1995
 - Tradeoff between Q and fc
 - Q can be a function of frequency

Spectrum can be used to calculate stress drop. Self-similarity of differently sized earthquakes?

Qopen method

Separation of intrinsic and scattering **Q** by envel**ope** inversio**n**

Idea: Intrinsic attenuation and scattering strength can be separated and quantified with the temporal and spatial shape of the envelope!

Qopen method for shear waves

- G accounts for geometrical spreading and scattering => here G is analytic
- Compare with observed envelopes of S wave + coda
- Invert for Ri, W, g0 and b (optimization in g0 + least squares log fit)
- Repeat the steps for all frequency bands
- Repeat with different earthquakes
- Assumptions:
 - homogeneous half space
 - point source (small EQ)
 - moment tensor ignored

Sens-Schönfelder & Wegler 2006, Eulenfeld & Wegler 2016

Imprint of anisotropic scattering

- Qopen assumes isotropic scattering, this is often a bad assumption
- In an anisotropic scattering environment the scattering strength estimated with Qopen relates to the transport mean free path (Gaebler et al. 2015)
- Model cannot predict correct envelope directly after the S body wave
 => In the inversion the envelope inside the direct wave window needs to be averaged

Estimation of site response and source spectra

Source spectra and seismic moments

Qopen inversion vs Grond moment tensor inversion vs spectra from Fourier transform of body waves

source displacement

seismic moment

_ high freqcuency fall-off (2 for omega-square model)

corner sharpness corner frequency

Czech 2018 EQ swarm – moment magnitudes

Qopen inversion vs Grond moment tensor inversion vs spectra from Fourier transform of body waves

- => Robust estimation of moment magnitudes for small earthquakes
- => Can be used in high scattering environments with a lack of impulsive onsets

Code available at github.com/trichter/qopen

Applications

USArray – scattering strength (left) versus intrinsic attenuation (right)

·1.7 ·2.2

27

2.1

2.6

Eulenfeld & Wegler 2017

Application USArray – high freq site amplification, magnitudes

Eulenfeld & Wegler 2017

Helsinki 2018 and 2020 stimulation

- 2018 stimulation induced ~450 earthquakes (blue) with 0<=ML<=1.8,
 90 MPa peak well-head pressure,
 18 000 m3 volume
- 2020 stimulation induced ~25 earthquakes (orange) with 0<=ML<=1.8

70 MPa, 2 900 m3 volume

Eulenfeld et al. 2023

Helsinki 2018 stimulation – example envelopes for 1 event

Eulenfeld et al. 2023

Helsinki 2018/2020 – source displacement spectra

Helsinki 2018/2020 – moment magnitudes

- Mw versus ML relationship for the two stimulations
- 2020 events have systematically smaller ML for same Mw compared to 2018 events

Helsinki 2018/2020 – source parameters

- Mw versus fc relationship for the two stimulations
- 2020 events have systematically smaller fc for same Mw compared to 2018 events
- · Consistent with Mw-ML relationship

Summary

- Quickly estimate scattering and intrinsic attenuation parameters for your local data set
- Estimation of site responses (relative)
- Robust determination of moment magnitude and other source parameters

Thanks!

References

- Eulenfeld, T, Hillers G, Vuorinaen T A T, Wegler U (2023), Induced earthquake source parameters, attenuation, and site effects from waveform envelopes in the Fennoscandian Shield, submitted to Journal of Geophysical Research: Solid Earth, preprint on arxiv
- Eulenfeld T, Dahm T, Heimann S & Wegler U (2021), Fast and robust earthquake source spectra and moment magnitudes from envelope inversion, Bulletin of the Seismological Society of America, doi: 10.1785/0120210200
- Hannemann K, Eulenfeld T, Krüger F & Dahm T (2021), Seismic scattering and absorption of oceanic lithospheric S waves in the Eastern North Atlantic, Geophysical Journal International, doi: 10.1093/gji/ggab493
- van Laaten M, Eulenfeld T & Wegler U (2021), Comparison of Multiple Lapse Time Window Analysis and Qopen to determine intrinsic and scattering attenuation, Geophysical Journal International, doi: 10.1093/gji/ggab390
- Eulenfeld T & Wegler U (2017), Crustal intrinsic and scattering attenuation of high-frequency shear waves in the contiguous United States, Journal of Geophysical Research: Solid Earth, doi: 10.1002/2017JB014038
- Eulenfeld T & Wegler U (2016), Measurement of intrinsic and scattering attenuation of shear waves in two sedimentary basins and comparison to crystalline sites in Germany, Geophysical Journal International, doi: 10.1093/gji/ggw035
- Gaebler P J, Eulenfeld T & Wegler U (2015), Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory, Geophysical Journal International, doi: 10.1093/gji/ggv393
- Sens-Schönfelder C & Wegler U (2006), Radiative transfer theory for estimation of the seismic moment, Geophysical Journal International, doi: 10.1111/j.1365-246X.2006.03139.x
- Eulenfeld T (2020), Qopen: Separation of intrinsic and scattering **Q** by envel**ope** inversio**n**, https://github.com/trichter/qopen, doi: 10.5281/zenodo.3953654
- Abercrombie R E (1995), Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5 km depth, Journal of Geophysical Research, doi: 10.1029/95JB02397

Qopen optimization

Eulenfeld & Wegler 2016

Helsinki 2018 stimulation – envelope fits example 16 – 32 Hz

32