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TOPOLOGICAL SIMILARITY MEASURES BETWEEN MULTI-FIELD

DATA

Abstract

Awide range of data that appear in scientific experiments and simulations are mostly

scalar or multi-field (alternatively, multivariate - consisting of multiple scalar fields) in

nature. Topological feature extraction of such data aims to reveal important properties

useful to the domain scientists. For scalar data, feature extraction has been studied

extensively by proposing different topological similarity (or dis-similarity) measures

between two datasets and proven useful in extracting important topological features.

However, for the case ofmulti-field data developing such topological similaritymeasures

is still in its infancy. In the current thesis, we address the problem of computing

topological similarity or dis-similarity between two multi-field data. Towards this, we

propose two approaches for measuring topological similarity between multi-field data

based on their Reeb spaces.

A Reeb space captures the fiber-topology of a multi-field, each point of the Reeb

space representing a connected component of a fiber. Usually, the Reeb space structure

is complex and finding a topological distance between two multi-fields in terms of their

Reeb spaces is a non-trivial problem. Therefore, in our first approach, we project the

Reeb space onto the range of the multi-field to obtain a fiber-component distribution and

then propose different distance metrics between two such distributions. Given a time-

varying multi-field data, the method computes a metric plot for each pair of distributions

at consecutive time stamps to understand the topological changes in the data over time.



v

In the second approach, we propose a topological similarity measure between two

multi-field data based on their multi-resolution Reeb Spaces. Our method generalizes a

previous similarity measure between two multi-resolution Reeb graphs for scalar data.

The method comprises of two main steps: (i) computing a multi-dimensional Reeb

Space at different resolutions and (ii) defining a similarity measure between two such

multi-resolution Reeb spaces.

We apply ourmethods in feature extraction of differentmultivariate real and synthetic

data. The effectiveness of the proposed methods is shown by its ability to capture

important topological features that are not always possible to detect using the component

scalar fields.
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CHAPTER 1

INTRODUCTION

Most of the scientific data appear in scientific experiments and simulations are scalar

or multi-field (alternatively, multivariate - consists of multiple scalar fields) in nature.

For example, the simulations in fluid dynamics, combustion, molecular physics and

other scientific experiments generate various scalar fields such as pressure, temperature,

kinetic energy etc. Researchers try to comprehend diverse physical phenomena by

observing features and properties from the interrelationships between the fields. It has

been observed that such multi-field or multivariate information could uncover various

features that is difficult to observe by using only scalar fields. In topological data analysis

we develop various tools and methods for extracting and visualizing important features

in such data. Topology-based techniques are very proven to be extremely effective to

uncover significant properties which are useful for the domain scientists.

1.1 Motivation

During the past two decades, topological analysis of shapes and data was generally

determined by scalar topology, using contour tree, Reeb graph, Morse-Smale complex

and their variants. Such techniques have been extended for time-varying scalar field

data by characterizing various topology-based similarity measures between two scalar

fields. Although work has been done extensively to extract topological features from
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the scalar field, single fields are still not sufficient to capture all such features [14].

This gives the motivation to extract topological features between multiple scalar fields

or simply multi-field. To extract important features in multi-field data, we need to

study the similarity between two multi-fields with which we can capture the topological

features between these multi-fields and understand the underlying phenomenon existing

between them. This study aims to find the similarity between multi-field, by applying

different similarity. Comparison of these multi-field data will help in understanding and

visualizing the interaction among different scalar field data and their relationship in an

efficient manner.

1.2 Background and Related Work

1.2.1 Scalar Topology

When a function uniquely maps points from a two or three dimensional space to

real values, then these functions are called scalar functions. The data set obtained

from domain scientists are in form of function values measured at discrete points in the

domain using procedural methods and requires analytical description of it. The scalar

fields are like the temperature, density, pressure or any other physical measure. The

domain is triangulated grid and these values are defined on the vertices of the dataset.

These triangulated grid are known as simiplicial complex.

Let us consider a scalar function 5 : "→ ' on a 3-dimensional manifold " . Then

we have the following terminologies defined for this function.

Level Sets. Given a real value 2 ∈ ', the inverse image 5 −1(2) of the map 5 , is called

a level set of 5 at 2. A level set can simply be defined as the set of points ? ∈ " where

5 (?) = 2. The topological features of a scalar field can be tracked using level sets as
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shown in Figure FC1.1. A sublevel set is a set of points in " where 5 (G) ≤ 2 and a

superlevel set is a set of point in " where 5 (G) ≥ 2.

Contours. The connected components of a level set are called contours. The contours

of the function 5 is shown in Figure FC1.1

Morse Theory. In differential topology, Morse theory helps in understanding the topol-

ogy of a 2-manifold " , by studying differentiable or smooth functions on that mani-

fold [30]. A point G ∈ " is critical point (or singular point) if the gradient of 5 vanishes

or ∇ 5 (G) = 0 (obtained by choosing a suitable local coordinates), otherwise G is a reg-

ular point. The function value 5 (G) = 2 ∈ ' corresponding to a critical point is called

a critical value and others are called regular values. Again a level set corresponding

to a regular value is called a regular level set, otherwise it is a critical level set. A

critical point is non-degenerate if its Hessian matrix � 5 (G) is non-singular, otherwise

the critical point is degenerate. The function 5 : " → ' is a Morse function, if (i)

all its critical points are non-degenerate and (ii) have distinct function values. Morse

lemma [31] states that near a non-degenerate critical point G ∈ " it is possible to express

the function 5 as 5 (D, E) = 5 (G) ±D2± E2 using local coordinates D and E. The number

of minus signs in the expression is called the index of the critical point. Thus a Morse

function on a 2-manifold has three types of critical points - minimum (index 0), saddle

(index 1) and maximum (index 2). Morse theory relates the topology of the sublevel

set of a Morse function with the local geometry of the critical points. If we consider

the change in topology of the sublevel set of a Morse function while function value

gradually increases, then Morse theory says while passing a critical point of index 8,

the topology of the new sublevel set can be obtained by attaching an 8-cell with the old

sublevel set and there is no topological change in the sublevel set while passing through

a regular value.
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Figure FC1.1: Level sets and corresponding critical points (red) and regular points (black) in
range '. The bold lines in manifold " represents the contours.

The connected components of the level sets can be extracted using various topological

abstractions. Level set based abstraction is based on gradients and trees/graphs. When

the domain is simply connected, i.e. it does not have a hole in it, we represent the

abstraction using a tree and if there is a hole in the domain (not simply connected) we

represent the domain using a graph.

Reeb Graph. A Reeb graph captures the level set topology corresponding to a scalar

field 5 on a manifold " [16]. Each point of the Reeb graph corresponds to a contour.

In particular, the nodes of the Reeb graph corresponds to the contours passing through

the critical points of 5 . The edges connecting the nodes represent the contours which

pass through the regular points of 5 . When the domain of the function is not simply-

connected i.e. it does not have a hole in it, then the corresponding Reeb graph contains
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loops. The Figure FC1.2 shows a simple example of double torus with two legs and the

Reeb graph of its height function.

h

(a) (b)

Figure FC1.2: (a) Height field defined on the double torus with two legs and its the level sets,
(b) Corresponding Reeb Graph.

Contour Tree. When the domain of the function 5 is simply-connected, then the Reeb

graph of the function has no loops and is called a contour tree [16]. A contour tree is

widely used to visualize the topological features of different scalar data in volumetric

domain. A contour tree is computed by the union of a join tree and a split tree [11]. A

join tree captures the births and deaths of the components of the sublevel sets of scalar

field 5 while changing the scalar values from its minimum to maximum. Similarly a

split tree is obtained by computing the join tree of negative of 5 , i.e. of − 5 . Each

point of the domain belongs to a contour at a particular level. All these contours form

a contour map. The Figure FC1.3 shows a simple contour map and its corresponding

contour tree.
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Figure FC1.3: (a) A contour map (b) Corresponding contour tree.

Multi-ResolutionReebGraph. The basic idea of theMultiresolution Reeb graph (MRG)

is to develop a series of Reeb graphs to capture the topological information of a scalar

field (or its underlying domain) at different resolutions [23]. It is obtained by subdi-

viding the data-domain into smaller regions based on their function values (as shown

in Figure. FC1.4). A Reeb graph for a finer level is constructed by subdividing each

region. For simplicity, this is done using a binary subdivision.

h

n0

n1

n7

n15

n11

n8

n2

n3

n10n9

n6

n5

n4

n14

n13n12

n16

r0

r1

r2

r3

r6

r5

r4

r8

r11

r10

r7

r9

r12

r11

r13

Figure FC1.4: An MRG of the height function ℎ of a standing double torus with legs. The figure
shows the MRG with four Reeb graphs at four different resolutions - coarser to finer Reeb graphs
are shown from the left to right.
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AnMRG is a set of graphs that satisfies the following properties: First, a parent-child

relationship is maintained between adjacent nodes. Second, by reversing the process of

MRG, one can obtain the actual Reeb graph. Third, every Reeb graph of the finer level

contains information about its corresponding coarser level. This information is used to

construct multiple resolutions in the graph. Figure. FC1.4 shows the construction of

MRG over the range of the height function ℎ of the shape. In the Figure. FC1.4, the

range of ℎ is divided into intervals at different resolutions. The rightmost is the shape,

which is a double torus with legs of different height. Now from left to right, the range

of ℎ is a single interval A0, the resultant Reeb graph obtained will be a single node

representing the fully connected object (leftmost). Next the interval A0 is partitioned

into intervals A1 and A2, giving rise to a Reeb graph with two nodes =1 and =2. According

to the connectivity of the object, edges are drawn between =1 and =2. Similarly, finer

resolution of Reeb graphs are constructed.

1.2.2 Multi-field Topology

A large number of data in scientific simulations and experiments usually consist of

more than one scalar field. To visualize and understand these data various tools are used.

In this section we describe different terminologies to understand the tools for multi-field

topology.

Fiber. Similar to level sets in a scalar field we consider fibers corresponding to a

multi-field. Let 5 = ( 51, 52, . . . , 5=) : '< → '= be a multi-field with each 58 : '< → '

being a scalar field (8 = 1,2, . . . , =). Then a fiber of 5 corresponding to a point 2 =

(21, 22, . . . , 2=) ∈ '= is defined as a set of points ? ∈ '< such that 5 (?) = 2 [13] and

is denoted as 5 −1(2). A fiber 5 −1(2) can also be expressed as the intersection of the

level sets of the component scalar fields, i.e 5 −1(2) = 5 −1
1 (21) ∩ 5 −1

2 (22) ∩ 5 −1
3 (23) ∩

. . .∩ 5 −1
= (2=). A connected component of a fiber is called a fiber-component or joint
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contour [13].

Reeb Space. Similar as the Reeb graph for a scalar field, a Reeb space captures the

fiber topology of a multifield [13]. Each point on the Reeb space corresponds to a

fiber-component or joint contours of a multi-field and vice-versa . For a multi-field

5 : '< → '=, when = ≤ <, the Reeb space consists of =-manifolds joined together

in a complicated fashion [18]. Figure FC1.5 shows an example of the Reeb space

corresponding to a multi-field consists of two scalar fields 51(G, H, I) = G2 + H2 − I and

52 = I. We compute an approximation of the Reeb space using the joint contour net

algorithm [11], as described later.

Jacobi Set and Jacobi Structure. In a multi-field, 5 = ( 51, 52, ..., 5=), the set of critical

point of one field (say 58 ) restricted to the intersection of level sets of rest of the

component fields is known as Jacobi set. Intuitively, Jacobi set of two generic Morse

functions is the set of points where gradients of the individual fields are parallel [15].

The projection of Jacobi set of the multi-field from the domain to the Reeb space is

defined as the Jacobi Structure of Reeb Space [12]. In Figure FC1.5 the red lines in (a)

is the Jacobi set and the red lines in (b) is the corresponding Jacobi structure.

Joint Contour Net. Joint Contour Net (JCN) gives a practical algorithm for approxi-

mating a Reeb space [9]. The level sets of the fields are quantized into discrete levels

and a connected component of the quantized level set in a mesh is called a quantized

contour or contour slab. A JCN is constructed in four phases. First, corresponding to

a quantization of each field, all the contour fragments in each cell of the whole mesh

is constructed. Second, the contour fragments of the component fields in a cell are

intersected to obtain the joint contour fragments. Third, corresponding to each joint

contour fragment a node is created, to construct an adjacency graph (dual graph). An
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(a) (b)

Figure FC1.5: (a) Paraboloid and height field with Jacobi set (red), (b) Reeb Space (JCN) of the
corresponding multi-field with Jacobi structure (red).

edge is added between two nodes if the corresponding joint contour fragments are ad-

jacent. Finally, the neighbouring additional nodes with similar isovalues are collapsed

to obtain a JCN. Thus, each node in the JCN corresponds to a joint contour slab or

quantized fiber-component and an edge represents the adjacency between two quantized

fiber-components. Figure FC1.6 (left) shows an example of a JCN for a bivariate field

in planar domain.

Multi-Dimensional Reeb Graph. A Multi Dimensional Reeb Graph (MDRG) is a hi-

erarchical decomposition of the Reeb space (or the joint contour net) into set of Reeb

graphs in different dimensions [12]. For a bivariate field ( 51, 52) first we compute the

Reeb graph '( 51) of the field 51 (in the first dimension). Now each point ? ∈ '( 51)

corresponds to a contour �? of 51. We restrict function 52 (in second dimension) on

�? and define the restricted function 5̃
?

2 = 52 |�?
. Then for the second dimension, we

compute Reeb graphs for each of these restricted functions 5̃ ?2 . Figure FC1.6 shows
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Figure FC1.6: JCN (left) and corresponding MDRG (right) over a bi-variate field data (field 1:
Concentric circles and field 2: Parallel lines) over a 5×5×1 domain.

an example of a quantized Reeb space or JCN and its decomposition into MDRG for a

bivariate field.

1.2.3 Similarity/Dissimilarity Calculation

A lot of work has been done to extract topological features from scalar field data.

Various distance measures have been proposed between different data structures to

extract these features. A distance measure between extremum graphs has been proposed

by Narayana et al. [33] to compare scalar fields. A survey by Gao et. al [19] on

graph edit distance for application of pattern analysis using different inexact matching

algorithms has been studied. Bauer et. al. [6] proposed a functional distortion metric

on the Reeb graph and proved its metric properties. An edit distance between merge

trees for visualizing features in time varying scalar field data is proposed in [6]. Feature

visualization in time-varying single field data [40] is done by Sridharamurthy et al. by

proposing an edit distance metric between merge trees. Other related work has been

done by proposing a distance metric between merge trees to find similarity between
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scalar fields [32]. An interleaving distance as a distance metric between merge trees has

been proposed by Morozov et al. [32].

Othermethods that do not use topology basedmethods, to visualize and track features

in time-varying data have been proposed in the literature. Lee et al. [41] proposed a

time-activity curve to visualize features in time-varying data. Earth mover’s distance is

proposed to solve the problem of aggregate-attribute criteria and volume overlapping.

The earth mover’s distance is proposed by Jie et. al [25]. The branch-and-bound

approach is a global optimization algorithm and the proposed metric can track features

efficiently and accurately.

1.2.4 Problem Statements

Generalization of above described data structures and distancemetric to time-varying

multi-field data is challenging and requires further development. Although other tools

such as Reeb space, Jacobi set and Joint Contour Net are already proposed in literature

but a comparative study of these methods in time-varying multi-field data requires more

development. In this thesis, we deal with two main problems.

First, finding a topological similarity metric that can be used to capture topological

changes in time-varyingmulti-field data. In this work [3], we introduce a topology-aware

distance metric between two multi-field based on their fiber-component distributions or

histograms in the range space. We also prove the metric properties of the proposed

distance measures. We show that the proposed measures capture significant or interest-

ing events in time-varying phenomena, not possible using a study of individual fields.

We validate the method by experimenting on a time-varying synthetic data where topo-

logical features are known in advance. We show the effectiveness of the method by

experimenting on previously studied nuclear-scission data and re-explain how scission

events are captured. We also apply our method in capturing important feature in the
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orbital data of Pt-CO interaction.

Second, to create a data structure that can store topological features of multi-field

data. In this work, we introduce a hierarchical data structure called Multi-Resolution

Multi Dimension Reeb Graph (MRMDRG) that can hierarchically store Reeb graphs of

multiple resolutions and multiple dimensions. We also propose a similarity measure

that captures significant features for time-varying data, which is not possible using scalar

field data. Later, to validate the method, we experiment with different simulated data

where topological features are known in advance. We show the effectiveness of the

method by experimenting with previously studied nuclear scission data and re-examine

the scission event.

In chapter 2, wewill go through the detailed description of the first problem statement

along with the proposed method and its application on different datasets. In chapter

3, we will explain the second problem statement in detail, along with the proposed

method and its application on various synthetic and real datasets. Finally, we present

the concluding remarks in chapter 4 and outline the scope for future study.
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CHAPTER 2

TOPOLOGICAL FEATURE SEARCH IN TIME-VARYING

MULTI-FIELD DATA

2.1 Chapter Summary

A wide range of data that appear in scientific experiments and simulations are

multivariate or multi-field in nature, consisting of multiple scalar fields. Topological

feature search of such data aims to reveal important properties useful to the domain

scientists. It has been shown in recent works that a single scalar field is insufficient to

capture many important topological features in the data, instead one needs to consider

topological relationships between multiple scalar fields. In the current chapter, we

propose a novel method of finding similarity between two multi-field data by comparing

their respective fiber component distributions. Given a time-varyingmulti-field data, the

method computes a metric plot for each pair of histograms at consecutive time stamps

to understand the topological changes in the data over time. We validate the method

using real and synthetic data. The effectiveness of the proposed method is shown by its

ability to capture important topological features that are not always possible to detect

using the individual component scalar fields.
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2.2 Introduction

Scientists understand different physical phenomena by studying the interrelationships

between features in different fields. It has been observed and shown that such multi-

field or multivariate data can reveal many important phenomena about an experiment

that are impossible to study using a single scalar field data [10, 14]. Development of

tools and techniques for extracting and visualizing features in multi-field data is an

important topic of research interest [21]. Topology-based methods have been shown

to be extremely effective in this context. During the previous two decades, topological

analysis of shapes and data was mostly driven by scalar topology, using contour tree,

Reeb graph, Morse-Smale complex and their variants [7]. Such techniques have also

been extended for time-varying scalar field data by defining different topology-aware

similarity measures between two scalar fields [6, 33, 37].

Generalization of the techniques to time-varying multi-field data is challenging and

requires further development in both theory and computational methods. More recently,

new tools have been proposed for understanding and visualizing multi-field data – Reeb

Space [18], Jacobi set [8, 15, 17], Joint Contour Net [9, 14] and Pareto analysis [24].

Extending these methods to time-varying multi-field data requires the development

of techniques for comparative analysis and visualization. For example, developing a

comparative measure between two Reeb spaces is a challenging open problem. In this

thesis chapter, we consider a simpler feature descriptor of a multi-field, namely its fiber-

component distribution or histogram. Using this, we make a first step forward towards

a topology-aware distance measure between two multi-fields in terms of the distance

between their fiber-component distributions. Our contribution in the current chapter is

as follows:

• We introduce simple topology-aware distance measures between two multi-fields
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based on their fiber-component distributions or histograms in the range space. We

prove the metric properties of the proposed distance measures.

• We show that the proposed measures capture significant or interesting events in

time-varying phenomena, not possible using a study of individual fields. We

validate the method by experimenting on a time-varying synthetic data where

topological features are known in advance.

• We show effectiveness of our method by experimenting on previously studied

nuclear-scission data [14] and re-explain how scission events are captured. We

also apply our method in capturing important feature in the orbital data of Pt-CO

interaction.

Section 2.3 discusses related works on scalar and multi-field data analysis. Section

2.4 describes different data structures or representations used critical for understanding

and visualizing multi-field data. Section 2.5 introduces our proposed topology-aware

distance measures and describes important properties of the measure. Section 2.6

discusses the implementation details and Section 2.7 and Section 2.8 describe various

results of experiments on synthetic and real data. The experiments are conducted on

nuclear scission, fission, and molecular orbital density data of Pt-CO interaction.

2.3 Related Work

Feature extraction in time-varying data is a well studied topic and several approaches

have been proposed. We describe a few relevant approaches here.

Various similarity measures between scalar fields have been studied to analyze re-

peating patterns and similar arrangements in the data. Hilaga et al. studied topological

shape matching using a multiresolution Reeb Graph (MRG) [23]. Saikia et al. propose a

method for finding repeating topological structure in a scalar data using a data structure
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called the extended branch decomposition graph (eBDG) [37]. In ther following pa-

per [?] the authors describe a histogram feature descriptor to compare subtrees of merge

trees against each other. Narayanan et al. define a distance measure between extremum

graphs to compare two scalar fields [33].

Many other comparison measures have been proposed in the literature for finding

the distance between graphs or topological data structures. Bauer et al. have proposed

a functional distortion metric on Reeb Graph and show its stability properties [6]. A

survey on graph edit distance byGao et al. [19] discusses different inexact graphmatching

algorithms for the application in pattern analysis. Sridharamurthy et al. propose an edit

distance between merge trees for feature visualization in time-varying scalar data [40].

Thomas et al. propose a multiscale symmetry detection technique in scalar fields using

contour clustering and studying the similarity between them [42]. In related works,

different distance metrics between the merge trees have been proposed to provide a

similarity between the corresponding scalar fields [?, 32].

Other techniques that are not based on topological analysis have also been proposed in

the literature for tracking and visualizing time-varying features. Ji et al. [25] proposed

a global optimization algorithm for time-varying data and resolved the problems of

volume overlapping and aggregate-attribute criteria by using the earth mover’s distance.

A branch-and-bound approach was used for the global cost evaluation. The resultant

approach and the metric was able to track features accurately and efficiently. Lee et

al. [41] proposed a time activity curve (TAC) to visualize time-varying features.

However, topological feature search in time-varying multi-field data is a compara-

tively new area of research and only few works can be found in the literature. Duke et

al. [14] propose a joint contour net (JCN) based visualization technique for detecting

nuclear scission feature in the time-varyingmulti-field density data. It has been observed

that direct visualization of the topological features using JCNs does not scale to large



17

data sizes because the JCN structure can be extremely complicated. In this chapter, our

method replaces this JCN visualization technique by a histogram comparison method.

2.4 Background

In this section, we discuss a few tools and techniques from the literature that are

required to describe our proposed distance measure.

2.4.1 Histogram and isosurface statistics, continuous scatter plot

A histogram visualizes the distribution of the samples of a scalar field using a bar

graph that is constructed by binning the samples in the field range. Histograms provide

a measure of importance of isovalues based on the statistics of sample points. Carr

et al. [20] show that histograms represent the spatial distribution of scalar fields with

a nearest neighbourhood interpolation. Moreover, they show that isosurface statistics,

such as the area of isosurfaces [5], betters represent the distribution of a scalar field.

Bivariate histograms represent two fields together. These histograms consist of bins

of possibly different shapes such as square, triangle or hexagonal [38]. Square shaped

bins of the histogram consist of the count for each pair of values defined on the axes. This

count can be used to calculate the variance and bias from the integrated mean square

error by using appropriate formulae. The square bins can be stretched to a rectangular

shape based on the scale defined on the axes.

The density function corresponding to a collection of continuous input fields is well

represented by a continuous scatter plot. Unlike histograms, continuous scatter plots

do not depend on the bin sizes. Bachthaler et al [4] describe a mathematical model for

generic continuous scatter plots of maps from =-D spatial domain to <-D data domain.
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Lehmann et al. [29] describe algorithm for detecting discontinuities in the continuous

scatter plots that reveal important topological features in the data.

2.4.2 Multi-field Topology and Jacobi Set

A multi-field on a 3-manifoldM (⊆ R3) with A component scalar fields 58 :M→ R

(8 = 1, . . . , A) is a map f = ( 51, 52, . . . , 5A) : M→ RA . In differential topology, f is

considered to be a smoothmapwhen all its partial derivatives of any order are continuous.

A point x ∈M is called a singular point (or critical point) of f if the rank of its differential

map dfx is strictly less than min{3,A} where dfx is the A×3 Jacobian matrix whose rows

are the gradients of 51 to 5A at x. And the corresponding value f (x) = c = (21, 22, . . . , 2A)

in RA is a singular value. Otherwise if the rank of the differential map dfx is min{3,A}

then x is called a regular point and a point y ∈ RA is a regular value if f−1(y) does not

contain a singular point.

The inverse image of the map f corresponding to a value c ∈ RA , f−1(c) is called a

fiber and each connected component of the fiber is called a fiber-component [35,36]. In

particular, for a scalar field these are known as the level set and the contour, respectively.

The inverse image of a singular value is called a singular fiber and the inverse image of

a regular value is called a regular fiber. If a fiber-component passes through a singular

point, it is called a singular fiber-component. Otherwise, it is known as a regular fiber-

component. Note that a singular fiber may contain a regular fiber-component. Topology

of a multi-field data is usually studied based on its fiber-topology [13].

Jacobi set is used to study topological relationship between two or multiple scalar

fields. Jacobi set Jf of a multi-field f is the closure of the set of all its singular points, i.e.

Jf = 2; {x ∈M : rank dfx < min{3,A}}. Alternatively, the Jacobi set is the set of critical

points of one component field (say 58) of f restricted to the intersection of the level sets

of the remaining component fields [15]. Intuitively, Jacobi set of two generic Morse
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functions 51, 52 :M→ R is the set of points where gradients of the individual fields are

parallel, i.e. J = {x ∈ M : ∇ 51(x) ×∇ 52(x) = 0}. Jacobi set plays a central role in the

design of a comparison measure between two or multiple scalar fields [17].
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Figure FC2.1: Figure shows a bivariate synthetic data and corresponding structures to understand
its topology. (a) Paraboloid and height field with Jacobi set (red), total 9 connected components
of the Jacobi set are numbered as 1 to 9 (b) Singular fiber-components that pass through the Jacobi
set points, (c) Reeb Space (JCN) with Jacobi structure (in red). Jacobi structure components that
are the projection of the Jacobi set components on theReeb Space are shown by the corresponding
dashed numbers. (d) Histogram with singular values (bins).

2.4.3 Reeb Space and Joint Contour Net

Similar to the Reeb graph of a scalar field, the Reeb space parameterizes the fiber-

components of a multi-field and its topology is described by the standard quotient space

topology [18]. A Jacobi structure has been defined as a projection of the Jacobi set on

the Reeb space, by the quotient map [13]. Figure FC2.1c illustrates a Reeb space with

Jacobi structure (in red) corresponding to a bivariate field.
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Joint Contour Net (JCN) [9] gives a practical algorithm for approximating a Reeb

space. A JCN is built in four stages. The first step of the JCN algorithm constructs all

the contour fragments in each cell of the entire mesh corresponding to a quantization

of each component field. In the second step, the joint contour fragments are computed

by computing the intersections of these contour fragments for the component fields in a

cell. The third step is to construct an adjacency graph (dual graph) of these joint contour

fragments where a node in the graph corresponds to a joint contour fragment and there

is an edge between two nodes if the corresponding joint contour fragments are adjacent.

Finally, the JCN is obtained by collapsing the neighbouring redundant nodes with

identical isovalues. Thus, each node in the JCN corresponds to a joint contour slab or

quantized fiber-component and an edge represents the adjacency between two quantized

fiber-components. We use the JCN implementation for computing the quantized fiber-

components and its histogram, see Figure FC2.1d.

2.4.4 Histogram Distance Measures

Different measures have been proposed in the literature to study the distance between

two histograms [34]. The measures may be classified into two types based on how they

are computed – bin-to-bin measures or cross-bin measures. In the former type, bins with

the same indices are compared. We list below, a few examples of measures for finding

distance between two histograms � and  with bin count ℎ8 and :8 respectively.

Minkowski-form distance:

3!A (�, ) =
(∑
8

|ℎ8 − :8 |A
)1/A

(Eqn 2.1)

Commonly used Minkowski-form distances are 3!1 , 3!2 and 3!∞ . These are often used

to compute dissimilarity between two color images.
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Histogram intersection:

3∩(�, ) = 1−

∑
8

min(ℎ8, :8)∑
8 :8

(Eqn 2.2)

This distance can capture the partial matches when the areas of the two histograms are

not equal.

Kullback-Leibler (KL) divergence:

3 ! (�, ) =
∑
8

ℎ8 log
ℎ8

:8
(Eqn 2.3)

This is designed froman information-theoretic viewpoint. Themeasure is non-symmetric

and sensitive to histogram binning.

One example of a cross-bin dissimilarity measure is the

Quadratic-form distance:

3� (�, ) =
√
(h−k))A(h−k), (Eqn 2.4)

where h and k are vector representations of � and  , respectively. The matrix A = [08 9 ]

is the similarity matrix where 08 9 denote the similarity between the 8-th bin of � with

the 9-th bin of  [34].

2.5 Our Method

Let us consider two continuousmulti-fields f = (-1, -2, . . . , -A) and g= (.1,.2, . . . ,.A)

over a 3-dimensional compact domain D ⊆ R3 where each of -8 and .8, (8 = 1, 2, . . . , A)

are real-valued scalar fields in the domain D. We consider comparing multi-fields f and

g that have almost similar topological features, e.g. multi-fields at two consecutive time

steps of a time-varyingmulti-field datawhere topological features vary continuously over
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time. A fiber of the multi-field f corresponding to a parametric point c = (21, 22, . . . , 2A)

is the preimage f−1(c) = -−1
1 (21) ∩-−1

2 (22) ∩ . . .∩-−1
A (2A). A connected component of

the fiber is called a fiber-component. Fiber-component topology is used to study multi-

field topology, similar to the use of contour topology for scalar field studies. The Reeb

space is a generalization of the Reeb graph. It captures the fiber-component topology

corresponding to a multi-field. However, Reeb space structure is rather complicated

and computing an effective distance measure between two Reeb spaces for comparing

corresponding multi-fields is an open problem.

In the current work, we consider the change in fiber-component distribution over

parametric space to capture the change in topology in two multi-fields with almost

similar topological features. We observe that the change in number of fiber-components

corresponding to a point on the parametric space implies the change (birth or death) in

number of sheets of the Reeb Space. Therefore, to study the topological changes from

f to g we first consider the fiber-component distributions as the feature-descriptors of

the respective multi-fields. Next, we propose few simple distance measures between the

fiber-component distributions to capture the difference in terms of topological features.

2.5.1 Fiber-Component Distribution over the Range Space

Let f = (-1, -2, . . . , -A) be a continuous multi-field from a 3-dimensional compact

domainD ⊆ R3 to the A-dimensional range space 'f = [01, 11] × [02, 12] × . . .× [0A , 1A],

08, 18 ∈ R. Define the function # : 'f→N as # (x) = |f−1(x) | for x ∈ 'f , where |f−1(x) |

represents the number of connected components in the fiber f−1(x). In other words,

# (x) maps each point x of 'f to the corresponding number of fiber-components of

f. We assume that # is a bounded function for multi-fields f defined over a compact

domain D. To compute the total number of fiber-components, we partition the range

'f into a union of <A sub-boxes by introducing the partitions of the intervals: 08 =
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G
(8)
0 < G

(8)
1 < . . . < G

(8)
< = 18 for 8 = 1,2, . . . , A. Let x8182...8A be a point in the sub-box

�8182...8A = [G
(1)
81−1, G

(1)
81
] × [G (2)

82−1, G
(2)
82
] × . . .× [G (A)

8A−1, G
(A)
8A
] for 81, 82, . . . , 8A = 1,2, . . . ,< with

volume Δ+8182...8A . Then, N, defined as the sum of number of fiber-components over all

points in 'f is equal to

N = lim
all Δ+8182 ...8A→0

<∑
81,82,...,8A=1

# (x8182...8A )Δ+8182...8A =
∫
'f

# (x)3x. (Eqn 2.5)

The function # is bounded and hence integrable. Next, we define a density function of

the fiber-component distribution as:

pf (x) =
# (x)

N
for x ∈ 'f , (Eqn 2.6)

where ∫
'f

pf (x)3x = 1.

In practice, to compute the fiber-component distribution over the range space, we

first discretize the continuous multi-field f = (-1, -2, . . . , -A) in the A-dimensional range

space. Let field -8 be discretized (quantized) uniformly at the values G (8)1 < G
(8)
2 < . . . < G

(8)
<8

for 8 = 1,2, . . . , A. We denote this discrete range space as spec('f) = �1 × �2 × . . .× �A ,

the Cartesian product of �8 = {G (8)1 , G
(8)
2 , . . . , G

(8)
<8
} (8 = 1,2, . . . , A). Then we compute

the frequency distribution of the corresponding fiber-components over this discrete

range space (spectrum). The probability mass function of the corresponding discrete

probability distribution is given by

?f (x) =
#̃x

Ñ
, where x ∈ spec('f). (Eqn 2.7)

Here, #̃x counts the number of fiber-components at the parametric pointx= (G (1)
81
, G
(2)
82
, . . . , G

(A)
8A
)
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in spec('f) (for 81 = 1,2, . . . ,<1; 82 = 1,2, . . . ,<2; . . . ; 8A = 1,2, . . . ,<A) and Ñ is the sum

of number of fiber-components of f over all points in the discrete range space spec('f).

Note that ?f defines a probability mass function (p.m.f.) since ?f (x) ≥ 0 and

∑
x∈spec('f)

?f (x) = 1.

When the quantization level goes to infinity then discrete case converges to the con-

tinuous case. Alternatively, one can define p.m.f. using �x by measuring the size of

the quantized fiber-components at the parametric point x ∈ spec('f) and � is the total

measure of all the fiber-components over spec('f). Thus we have

?f (x) =
�x
�
, where x ∈ spec('f). (Eqn 2.8)

In the proposed distance measure that we will describe next, we consider the definitions

in (Eqn 2.6) and (Eqn 2.7) because they capture the topological changes in the fibers of

the multi-field.

2.5.2 Distance between two Fiber-Component Distributions

Let us consider two multi-fields f1 = (-1, -2, . . . , -A) and f2 = (.1,.2, . . . ,.A) over

the domain D ⊆ R3 . Let 'f1 and 'f2 be the range spaces of f1 and f2, respectively.

We note that the range spaces 'f1 and 'f2 may be different but restrict our attention

to the case when they are almost equal. To define our distance measures between the

fiber-component distributions of f1 and f2, first we extend the range spaces 'f1 and 'f2 to

an equal range '. We define ' as: ' = '1×'2× . . .×'A where '8 = range -8 ∪ range .8

for 8 = 1,2, . . . , A. This extended range ' is considered as the common domain of fiber-

component distributions of both f1 and f2. The fiber-component distributions of f1 on

the part ' \ 'f1 , corresponding to which f1 has no data, is filled with zeros. Similarly

fiber-component distributions of f2 on ' \'f2 is filled with zeros.
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For the continuous case: letpf1 andpf2 be the density functions of the fiber-component

distributions of f1 and f2, respectively, over the extended range '. Let P1 and P2 be

the corresponding distribution functions. Then we define a point-wise distance measure

between P1 and P2 as:

3@ (P1,P2) =
(∫

'

|pf1 (x) −pf2 (x) |@3x
)1/@

(Eqn 2.9)

for any real number @ ≥ 1. In particular for @ = 1, @ = 2 or @ =∞ we get similar distance

measures of practical importance.

For the discrete case, let the range space ' be discretized (quantized) as spec(') =

�1 × �2 × . . . × �A where �8 = {G (8)1 , G
(8)
2 , . . . , G

(8)
<8
}. Let P1 = {? (1)x : x ∈ spec(')} and

P2 = {? (2)x : x ∈ spec(')} be the fiber-component distributions of f1 and f2, respectively,

over the discrete range space spec('). Then we define the point-wise distance measure

between the distributions P1 and P2 as:

3@ (P1,P2) =
©«

∑
x∈spec(')

|? (1)x − ?
(2)
x |@

ª®¬
1/@

. (Eqn 2.10)

for any real number @ ≥ 1. In particular, for @ = 1, @ = 2 and @ =∞ we have

31(P1,P2) =
∑

x∈spec(')
|? (1)x − ?

(2)
x | (Eqn 2.11)

32(P1,P2) =
©«

∑
x∈spec(')

|? (1)x − ?
(2)
x |2

ª®¬
1/2

(Eqn 2.12)
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and

3∞(P1,P2) = sup
x∈spec(')

|? (1)x − ?
(2)
x |. (Eqn 2.13)

These distance measures are motivated from the observation that the point-wise dif-

ference |#̃ (1)x − #̃
(2)
x | captures the number of changes in fiber-components between two

multi-fields at consecutive time steps for x ∈ spec('). Note that each fiber-component

of a multi-field corresponds to exactly one sheet of its Reeb space. So, the difference

in number of fiber-components captures the number of possible changes in Reeb space

sheets containing the parameter value x. Thus, |#̃ (1)x − #̃
(2)
x | captures the number of

births or deaths of sheets containing the parameter value x of the corresponding Reeb

spaces.

2.5.3 Weighted Distance for the Singular Values

Singular fibers capture the topological changes in the evolution of fibers in a multi-

field. The image of a singular fiber in the parametric space is called a singular value.

Because of importance of the singular values compare to regular values, we propose a

variant to the distance measure that weights the singular values differently,

3S@ (P1,P2;l) =
[
l

∑
x∈S
|? (1)x − ?

(2)
x |@ +

∑
x∉S
|? (1)x − ?

(2)
x |@

]1/@

. (Eqn 2.14)

Here, S is the set of singular values in the discrete range space spec(') and @ ≥ 1.

Moreover, l > 1 is the weight parameter to impose more importance to the singular

values than the regular values. We observe from our experiments on different datasets

that increasing the weight l increases the prominence of the events that correspond

to topological changes when we plot weighted distances over time. Figure FC2.1d

shows a fiber-component histogram with the singular values (in red) corresponding to
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the bivariate field in Figure FC2.1a.

2.5.4 Metric Space Properties of the Distance Measures

It is important to show that the proposed distancemeasures between two distributions

satisfy the metric space properties for the space P' of all possible fiber-component

distributions corresponding to different multi-fields with range '. Let us first show that

(P', 3@) is a metric space.

1. Non-negativity. Note 3@ is real-valued, finite and non-negative.

2. Identity. Wenote that for two distributionsP1,P2 ∈P', 3@ (P1,P2) = 0 if and only

if P1 = P2, since
∑

x∈spec(')
|? (1)x − ?

(2)
x |@ = 0 implies ? (1)x = ?

(2)
x for all x ∈ spec(').

3. Symmetry. It is straight-forward to show that 3@ (P1,P2) = 3@ (P2,P1). This

implies the symmetry property of 3@.

4. Triangle inequality. To show the triangle inequality of 3@ we consider three

fiber-component distributions P1, P2 and P3. Note, for @ = 1, |? (1)x − ?
(3)
x | ≤

|? (1)x − ?
(2)
x | + |?

(2)
x − ?

(3)
x |. For @ ≥ 1, using Minkowski inequality [22] we can

show that 3@ (P1,P3) ≤ 3@ (P1,P2) + 3@ (P2,P3).

Similar properties can be proved for the other distancemeasures 3S@ , 31, 32 and 3∞. How-

ever, note the above metric properties hold in the space of fiber-component distributions,

not necessarily in the space of actual multi-fields.

2.6 Implementation

We implement the distance measures described in the previous section using Visual-

ization Toolkit (VTK) [27] under the Joint Contour Net [9] implementation framework.
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The implementation works for a generic pair for multi-fields but is particularly designed

for time-varying multi-fields. We note that the range spaces of two multi-fields at two

consecutive time steps are not necessarily the same and may vary slightly. We expand

the range of both multi-fields by considering their component wise union and use zero-

padding to compute the histogram as described in section 2.5.2. Next, we describe the

four main steps of our implementation.

I. Computing Fiber-Components: First, we discretize or quantize the common range

of the multi-fields into finite numbers of bins. Then corresponding to each bin-value,

we compute the quantized fiber-components as described in the JCN algorithm [9]. In

other words, compute the contour slabs in each cell for each of the scalar fields and

then find intersection of the slabs to get the fragments. Finally an adjacency graph is

computed from the fragments to obtain quantized fiber-components. Each quantized

fiber-component corresponds to a node of the JCN.

II. Computing Fiber-Component Histograms: Next, we compute the A-dimensional

fiber-component histogram corresponding to each multi-field on the range space. We

use the same binning as used for the quantized fiber-component computation. Each bin

in the range is populated with the corresponding fiber-components. We compute the

number of fiber-components in each bin for the fiber-component histogram computation.

A color map specifying the number of all the nodes is shown in Figure FC2.1d. The

color map is chosen over a range of blue values. Light blue shows fewer number of nodes

(fiber-components), and as the color darkens the number of nodes (fiber-components)

also increases.

III. Computing Singular Values of multi-fields: To compute singular values first one

needs to compute the singular points or the Jacobi set in the domain of the multi-

field and then the corresponding range values of those points are actually the singular

values. In the current implementation we first compute the Jacobi structure using a
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multi-dimensional Reeb graph (MDRG) as described in [12, 13] and then project them

in the histogram-bins and call those bins as singular bins. We note that a singular bin of

the histogram may contain both singular and regular fiber-components (nodes). In the

histogram plot Figure FC2.1d, the red colored bins indicate the singular bins and blue

are the regular bins. For the singular bins of the histogram the singular, regular and total

nodes (singular and regular together) are stored separately for further computation.

IV.Computing DistanceMetrics between Histograms: The above three steps are per-

formed for multi-fields at all the time stamps or sites, and the corresponding histograms

are stored in different files. A python script is then implemented to compute the cor-

responding probability density from the histogram. Then the distance metrics between

two probability densities at the consecutive time steps are computed as in sections 2.5.2

and 2.5.3. The distance metric 3S@ (as in equation Eqn 2.14) is computed for different

values of @ and l. This metric is computed using the singular and regular nodes. Note

that if @ = 1 and l = 1 the metric 3S@ is same as 31. To validate the experiment 31 is

calculated using all the nodes (regular and singular nodes together). Along with the

measures that we have proposed we even calculated the distance measures for the al-

ready defined metrics for histogram comparison as defined in section 2.4.4. The values

for these distance metrics are stored and then used to create a comparison line plot.

The values were also used to check the metric properties defined in section 2.5.4. We

also calculated the simple root mean square distance for bivariate data for experimental

comparison.

2.7 Applications

We now describe applications of the proposed comparison driven feature search

method to four different datasets, namely (i) a synthetic data consisting of two polynomial

functions, (ii) the scission data of plutonium atom, (iii) fission data of Fermium atom
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and (iv) the DFT data of carbon monoxide and platinum (CO-Pt) molecular bond.

2.7.1 Synthetic Data

Figure FC2.2: Plots of distance measures between consecutive sites in a series of bivariate
(height, paraboloid) fields. (a) Various distance measures show a peak at site 11, indicating a
topological change. The proposed metric 3S@ also exhibits a peak, more significant than other
distance measures.(b) Root-mean-square plot is not able to capture the topological change. This
indicates the need for a topological data structures for multi-field data that captures topological
changes. (c) Fiber-component distributions for selected sites. Singular values are highlighted in
red. Blue nodes indicate regular nodes and the shades of blue indicate the number of nodes in a
particular bin (light indicates low). (d) Corresponding Reeb spaces. The height field is mapped
to color (blue is low and red is high).

We generate a synthetic bivariate field whose components are the height field

51(G, H, I) = I and the paraboloid field 52(G, H, I) = G2 + H2 − I. Both fields are defined

on an axis-aligned box [−5.5, 4.5] × [−5.5, 4.5] × [−5.5, 4.5] and sampled on a grid of

size 20× 20× 20. Next, we generate a sequence of multi-field data by incrementally

translating the domain-box along each of the three axes with small magnitude 0.05,

i.e. if (�G ,�H,�I) and (2G , 2H, 2I) are respectively the coordinates of a point on the box

before and after the translation, then �G = 2G + 0.05, �G = 2H + 0.05, �I = 2I + 0.05. In

total, we create 21 bivariate datasets. To create the consecutive datasets, we begin with
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the domain [−5.5, 4.5] × [−5.5, 4.5] × [−5.5, 4.5] and then apply the above described

sequence of translations 21 times until we obtain the domain of the final dataset, namely

[−4.5, 5.5] × [−4.5, 5.5] × [−4.5, 5.5]. The major topological feature is expected in

the dataset corresponding to the domain [−5, 5] × [−5, 5] × [−5, 5] (which is symmet-

ric about origin) because of degenerate intersections of the fiber-components with the

boundary of the box.

Observations and Results

We compute the fiber-component histograms for each dataset in the series and plot

the distance between two consecutive datasets, see Figure FC2.2. The distance peaks

at site 11 as expected. The red color in the histograms indicates singular nodes and

blue color indicates regular nodes. The number of regular nodes in a particular bin is

mapped to different shades of blue. Colors in the Reeb space indicate the height field

value. Although various distance measures are able to capture the topological change,

the peak was not sharp enough. The peak is most prominent using the 3S@ metric and

increased weight for singular nodes. Note that all the subsequent experiments are done

with l = 13 in order to keep the consistency in our experiments for all the datasets. If

the value of l is increased better peaks can be obtained and the value is not dependent

on the chosen dataset.

Comparison with the Root Mean Squares Metric

To show the usefulness of the proposed metrics, we compute the distance between

two multi-fields by directly extending the root mean square metric. The root mean

square distance between two multi-fields f = ( 51, . . . , 5A) and g = (61, . . . , 6A) can be gen-

eralized as the square root of the mean of the sum of the difference between consecutive
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component fields:

3'"( =

√√
1
<

<∑
8=1
{( 51(G8) −61(G8))2 + · · · + ( 5A (G8) −6A (G8))2}.

Here < is the number of data points in the domain. Figure FC2.2(b) shows the root

mean square distance metric plot. We observe that the rms metric is not capable of

capturing the topological change. This further motivates the study of measures such as

the one proposed in this thesis chapter for comparing multi-field data.

2.7.2 Plutonium Atom Dataset

(a)

(b)

site 688 site 689 site 690 site 692 site 693

Figure FC2.3: Plots of the distance measures for the scission data for the plutonium atom.
(a) Distance measure between fields at consecutive time steps vs. the time step in the range
[665− 699]. The proposed distance measure 3S@ exhibits a prominent peak between time step
690−692, which indicates a significant change. (b) Geometry of the plutonium atom at various
time steps. The point of scission is between site 690−692 and can be seen in the geometry.

Nuclear Density Functional Theory (DFT) is an approach to understand the nuclear

fission occurring in a nucleon-nucleon interaction in atomic nuclei. Nuclear fission is a

process by which an atom’s nucleus splits into two or more fragments. The splitting of
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the nucleus can be identified as stretching the core, hence it involves some deformation.

This deformation can be a crucial indicator of the topology of the atom’s nucleus.

An important problem in nuclear fission study is the accurate identification of points

in a continuous high dimensional manifold where the core is split. The time when

the atom breaks into multiple fragments is known as nuclear scission. At this time

the topology of the atom changes in terms of the number of components. Physicists

typically identify this phenomenon via tedious manual process. Previous works have

described a visual approach to identification of scission [14]. However, these methods

require the inspection of the geometry of the Reeb space for all time steps. Further, the

Reeb space is a complex structure that is difficult to examine. We aim to detect the key

time steps that correspond to topological changes by plotting a graph of the distance

measure over time.

The dataset consists of nuclear densities of plutonium atom which represents the

internal structure of a heavy nucleus. The dataset is a multi-field data consisting of

spatial density of proton, the spatial density of neutrons and spatial density of nucleons

(protons + neutrons) in the nucleus. These densities, represented as p, n and t are

sampled on a 40×40×66 grid. The dataset available to us is a negative log transformed

sample at 14 different time steps, namely [665, 670, 675, 680, 686, 687, 688, 689, 690,

692, 693, 694, 695, 699]. The time step where the nuclear scission occurs is reported in

earlier work [14] and confirmed by physicists. We use sufficiently small slab width to

capture the topological change. We use the following parameters in our experiments: p

(slab width 8) and n (slab width 2), p (slab width 8) and t (slab width 2), n (slab width

2) and t (slab width 2).

Observations and Results

We experiment with all combination of proton, neutrons and nucleon density con-

sidering two fields at a time. The plots in Figure FC2.3 show the distance measure
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for the first combination, p (slab width 8) and n (slab width 2). We observe a sudden

change between time steps 690 and 692. The 31 distance was typically in the range

of 0.0 to 0.02, but at nuclear scission, the measure increases to 0.1. This is due to

the change in the number of quantized fiber-components in the range space. After

scission, the distance measure dropped down to small values because the number of

fiber-components does not change after the split. Figure FC2.3(a) shows a comparison

with other bin-to-bin measures that are also able to capture the topology change but the

peak is not as prominent. We plot the measure 3S@ for different values of @ and weights.

As the weight for singular values is increased, the peak becomes more prominent and as

@ is increased the plot becomes smoother. Figure FC2.3 shows the highest peak in the

plot using weight l = 13 (for singular bins) and @ = 1.

2.7.3 Fermium Atom Dataset

(a)

(b)

site 23 site 24 site 25 site 26 site 27

Figure FC2.4: Plots of the distance measures for the scission data for the fermium-256 atom.
(a) Distance measure between fields at consecutive time steps vs. the time step in the range
[20,39]. The proposed distance measure 3S@ exhibits a prominent peak at time step 26, which
indicates a significant change. (b) Geometry of the fermium-256 atom at various time steps.
The point of scission is at site 26 and can be seen in the geometry.
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We experiment with another scission dataset, namely that of the Fermium-256 atom.

In this dataset, our goal is again to find the point where nuclear scission occurs. As

described in the literature [14], this dataset consists of three different types of data

viz. aEF: asymmetric elongated fission, sCF: symmetric compact fission and sEF:

symmetric elongated fission. The dataset that was made available is the sCF data and

was sufficient to detect the topological change where the fermium nucleus scission

happens symmetrically. The sCF dataset consists of three fields i.e. proton density (p),

neutron density (n) and total density (t) defined on a 19×19×19 sized grid. The field is

available at 56 regularly spaced time steps. Time steps 20-55 were chosen for analysis.

Choosing the slab width was still an issue, and we end up working with the same slab

width as that for Plutonium atom data, namely p (slab width 8) and n (slab width 2), p

(slab width 8) and t (slab width 2), n (slab width 2) and t (slab width 2).

Observations and Results

The same set of experiments were done using the fermium-256 atom dataset. Figure

FC2.4 shows the plots with proton and neutron density data from time step 20 to 39.

We observe a topological change at time step 26. Other bin-to-bin histogram metrics,

e.g. the KL divergence and the histogram intersection, exhibit a much smaller peak as

compared to the proposed 3S@ distance.

2.7.4 Chemistry Data: Pt-CO Bond

Adsorption of gas molecules on metal surfaces has various applications including

heterogeneous catalysis, electrochemistry, corrosion, and molecular electronics [26,39].

Particularly, the adsorption of the COmolecule on platinum surfaces has attracted atten-

tion of a wide scientific community, due to its role in the areas of automobile emission,

fuel cells and other catalytic processes [2,28]. Therefore, an atomic-level understanding
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site 1 site 13 site 16 site 20 site 21 site 35

(b)

(a)

(c)

Figure FC2.5: Plots of the distance measures for the orbital density data of Pt-CO bond at
different time steps. (a) Distance measure between fields at consecutive time steps vs. the time
step in the range [0,39]. The plots are for two field values, HOMO and LUMO and the highest
peak is obtained at time stamp 21. The proposed distance measure 3S@ exhibits a prominent peak,
which indicates a significant change. (b) Pt-CO Bond length vs time. Bond length stabilizes at
time step 21. (c) Geometry of the Pt-CO bond creation at various time steps, visualized using
the tool Avogadro. Although the bond is visible at time step 13, the bond length is not stable at
this site.

of the COmolecule interacting with the Pt surface is of utmost importance. In this study,

we have considered seven Pt atoms representing a platinum surface which interacts with

a CO molecule. As the CO molecule approaches towards one of the Pt atoms, the

CO bond starts weakening, and Pt-CO bond formation takes place. Quantum mechani-

cal computations were used to generate the electron density distribution corresponding

to the highest occupied molecule orbital (HOMO), lowest occupied molecular orbital

(LUMO) and HOMO−1. The electron density distribution was computed for varying

distance between the carbon atom of the COmolecule and the Pt atom. The Pt-CO bond

forms when the distance between the Pt atom and the CO molecule becomes ∼ 1.83�.

This Pt-CO dataset consists of orbital density for orbital numbers 69, 70 and 71. Orbital

number 70 corresponds to HOMO, orbital number 71 to LUMO and orbital number 69

to HOMO−1.
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Observations and Results

Figure FC2.5 shows different plots for the Pt-CO dataset. At site 21, we get the most

stable bond length between Pt and CO molecule. We observe that although the bond

is formed at site 13 (as validated by the geometry), the bond-length is not stable. The

bond length stabilizes at site 21 and does not change much later. We observe a sharp

peak in the plot of the proposed 3S@ distance. This peak corresponds to the formation of

the stable bond.

2.8 Single Scalar Field vs. multi-field

We now describe an experiment to demonstrate the importance of studying tools for

multi-field data over single scalar field analysis tools. Consider the Pt-CO molecular

dataset. Using only orbital 69 (HOMO-1) data the highest peak in the distance measure

plot is obtained at site 16 (Figure FC2.6. Distance plots for orbital 70 (HOMO) exhibit

the highest peak at site 21. On the other hand, using two fields together, i.e. orbital

data 69 and 70, or orbital data 70 and 71, or orbital data 69 and 71, we observe the

highest peak is always at site 21. Some topological changes may not be captured using a

bivariate data and we may need to consider more than two fields to detect the changes.
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Figure FC2.6: Distance plot for scalar data for Pt-CO bond detection dataset. (a) Plot for orbital
density 69 (HOMO−1). The highest peak is at site 16. (b) Plot for orbital density 70 (HOMO).
Significant peak is at site 21.
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CHAPTER 3

A TOPOLOGICAL SIMILARITY MEASURE BETWEEN

MULTI-FIELDS USING MULTI-RESOLUTION REEB SPACES

3.1 Chapter Summary

Topological similarity measures between scalar-fields has been studied extensively

and proven extremely useful in shape matching and time-varying scalar data analysis.

However, similar research for computing topological similarity between multi-fields

(or multiple scalar fields) is still in its infancy. In the current paper, we propose a

topological similaritymeasure between twomulti-fields in volumetric domain based on a

similarity measure between their multi-resolution Reeb spaces. Our method generalizes

the similarity measure between two multi-resolution Reeb graphs for the the shape

matching problem, described by Hilaga et al. [23]. Overall, our method consists of two

steps: (i) constructing a multi-resolution Reeb space in different resolutions of the data

and (ii) defining a similarity measure between two such multi-resolution Reeb spaces.

To satisfy the topological consistency between the points on the respective Reeb spaces,

we consider a hierarchical decomposition of each Reeb space into a multi-dimensional

Reeb graph. The effectiveness of the proposed similarity measure is shown by applying

on different time-varying volumetric real multi-field data.
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3.2 Introduction

To understand the physical phenomenon, scientists study the correlation between

features in individual fields. In the last two decades, different topological tools and

methods to extract topological features from data are mostly developed for single scalar

field data such as contour tree, Reeb graphs, morse-smale complex [7] and many more.

These techniques are also developed for time-varying data by determining different

topological similarity measures between two scalar fields [6, 33, 37].

Multi-field topological features are richer compare to the scalar-field topology. It is

observed that a single field data is not able to reveal many important features about an

experiment that a multi-field data can reveal [10, 14]. Developing tools that can extract

and visualize features for multi-field data is a recent topic of research and is still in

its infancy. The generalization of such a technique is a very challenging task in terms

of theoretical and computational aspects. Although recently, various tools have been

introduced in the literature for explaining and visualizing multi-field data such as Jacobi

sets [8, 15, 17], Reeb space [18], and Joint Contour Net [9, 14].

Developing a measure to do the comparison between two data sets is usually very

complex and extending these methods to time-varying multi-field data requires much

development. For example, visualization of the Joint contour net is very complex. It

requires much human effort by digging into the structure to identify any topological

feature and extending this to time-varying multi-field is even more difficult. In this

paper, we design a data structure that can store topological information in a hierarchical

format for each data field and different resolutions and later design a similarity metric

to find the similarity between two multi-field data. The main contribution of the paper

is described below:

1. We introduce a hierarchical data structure called Multi-Resolution Reeb space that
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can hierarchically store Reeb spaces in multiple resolutions.

2. We propose a similarity measure that captures significant topological features

for time-varying multi-field data, which is not possible using similarity measures

between scalar data.

3. To validate our method, we experiment with different simulated data where topo-

logical features are known in advance. We show the effectiveness of our method

by experimenting with previously studied nuclear scission data and re-examine the

scission event.

Section 3.3 discusses the related works on the scalar field and multi-field topological

analysis. Section 3.4 introduces our proposed data structure and our topology-aware

similarity metric. Section 3.5 explains the algorithm for creating the data-structure and

computing the similarity between the proposed data-structure. Section 3.6 explains the

implementation of the proposed algorithm and Section 3.7 describes various applications

along with their observations and results.

3.3 Related Work

Topological similarity and distance measures between scalar field data have been

studied extensively. Hilaga et al. [23] proposed a similarity measure between two shapes

by computing a Multi-resolution Reeb Graph (MRG) and then applied in topological

shape matching. A histogram feature descriptor is proposed by Saikia et al. [?] to

differentiate between subtrees of the merge tree. Narayanan et al. proposed a distance

measure to compare scalar fields using extremum graphs [33]. A survey on graph

edit distance and its application of pattern analysis using different inexact matching

algorithms is discussed by Gao et al. [19].
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Bauer et al. proposed a functional distortion metric for computing distance between

two Reeb graphs [6]. A data structure called extended branch decomposition graph

(eBDG) [37] is proposed by Saikia et al. using which repeating topological structure

in a scalar data is identified. A multiscale symmetry detection technique using contour

clustering is proposed in [42] by Thomas et al. Feature visualization in time-varying

single field data [40] is done by Sridharamurthy et al. by proposing an edit distance

metric between merge trees. Other work has been done to find similarity between scalar

fields by proposing a distance metric between merge trees [?]. Morozov et al. proposed

an interleaving distance as a distance metric between merge trees [32].

There are other techniques that do not use topology based methods to track and

visualize time-varying features in the literature. The time-activity curve is proposed by

Lee et al. [41] to visualize time-varying features. The problem of volume overlapping

and aggregate-attribute criteria is solved using earth mover’s distance, proposed by Jie et

al. [25]. The proposed branch-and-bound approach is a global optimization algorithm,

and the proposed metric can track features efficiently and accurately.

However, only a few investigations have been attempted towards finding a topological

measure between two multi-field data. Carr et al. [9] proposed a data-structure known

as joint contour net (JCN) that was applied to visualize nuclear scission features in

multi-field density data [14]. However, JCN structure is cumbersome for most of

the real datasets, and visualization topological features using such a structure is a

difficult task. In similar context, Chattopadhyay et al. proposed a hierarchical structure

known as Multi-Dimensional Reeb Graph (MDRG) [12] and used to identify critical

features, known as Jacobi structure, in the JCN. Recently, Agarwal et al. [3] proposed a

distance metric between the fiber-component distributions of multi-fields and shown its

application in detecting topological features in time-varying multi-field data.

In the next two sections we describe our method for computing a topological sim-
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ilarity between two multi-fields. First, we propose a new multi-resolution Reeb space

data-structure that captures the topology of a multi-field at different resolutions. In the

second step, we propose a similarity measure between two such multi-resolution Reeb

spaces.

3.4 Multi-Resolution Extension of Reeb Space

In this section we describe a new multi-resolution Reeb space (MRS) that captures

the topology of a multi-field data at different resolutions. The Reeb space at a particular

resolution is represented by its JCN. The idea is to develop a series of JCNs at different

levels of resolution.

3.4.1 Overview

A multi-resolution Reeb space is a hierarchical data structure where each node of

Reeb space represents the fiber component of a particular resolution and an edge is added

between the nodes if their corresponding joint contour fragments are adjacent to each

other. The finer resolution Reeb space is constructed by quantizing the level sets for each

component field. For simplicity, the quantization is done in binary fashion. Figure FC3.1

shows an example of a bivariate 2-dimensional data where the first component field is

the ring data and second component field is the bar data. In Figure FC3.1 (a) each

of the component field is divided into one quantized level set, and hence the whole

domain is represented using one node =0. In Figure FC3.1 (b) both the component

field is quantized into two quantized level sets, thereby representing unique values of

each contour fragment with nodes =1, =2, =3, =4 and =5. In Figure FC3.1 (c) each of

the component field is quantized into four level sets, thereby representing each contour

fragment with different nodes. These nodes can be used to identify the hierarchy. Nodes

=1, =2, =3, =4, =5 and =6 in Figure FC3.1 (e) are united to form node =0 in the coarset
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level (Figure FC3.1 (g)). Similarly, nodes =7, =9, =10, =11 in Figure FC3.1 (i) are united

to form node =1 in corresponding coarser level (Figure FC3.1 (h)). Other nodes in the

finer resolution are similarly united to form a node in the corresponding coarser level.

The multi-resolution Reeb space should satisfy the following properties:

Property 1: There is parent-child relationship between the nodes of adjacent resolution.

In Figure FC3.1, node =0 is the parent of nodes =1, =2, =3, =4, =5 and =6. Similarly =1 is

the parent of =7, =9, =10 and =11.

Property 2: The repeating the quantization the multi-resolution Reeb space converges

to the original Reeb space. This means, that the finer resolution can approximate the

domain more accurately.

Property 3: A Reeb space of a particular resolution implicitly contains all the infor-

mation of the coarser resolutions. This means, once the Reeb space is constructed for a

finer resolution the coarser resolution can be constructed easily by unifying the adjacent

nodes based on the values of component fields. In Figure FC3.1, the nodes {=1, =2, =3,

=4, =5, =6} are unified to =0 and nodes {=7, =9, =10, =11} to =1.

The multi-resolution Reeb space can be constructed using JCN construction satisfy-

ing above properties - this is described in the next subsection.

3.4.2 Construction of the Multi-Resolutional Reeb Spaces

The construction of multi-resolution Reeb space is illustrated in Figure FC3.1. In

this case, we take a simple example of a 2D bivariate ringBar data for explanation. The

construction of multi-resolution Reeb space starts with construction of Reeb space for

the desired finest resolution. This Reeb space is constructed by dividing the domain of

each component field into K quantized level sets. K determines the number of ranges

and the fineness of resolution. In Figure FC3.1 last column, the domain is divided
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Figure FC3.1: Multi-resolution Reeb Space corresponding to a PL bivariate data: (ring, height).
(a) Each component field is quantized into one level, and the corresponding JCN in (d) and (g)
consists of only one node representing node value and node name =0 respectively. (b) Each
component field is quantized into two levels and the corresponding JCN is shown is (e) with
node value and (h) with node names. (c) each component field is quantized into four levels,
and the corresponding JCN is shown in (f) and (i) representing node values and node names
repectively. Parent-child relationships between the nodes of JCNs in consecutive resolutions are
also shown in (g), (h) and (i), e.g. =0 is parent of {=1, =2, =3, =4, =5, =6}.

into 4 ranges for each component field, i.e., A08 = [0,1), A18 = [1,2), A28 = [2,3) and

A38 = [3,4), where i determines the component field. Note that, each component field

can also be quantized into different ranges. This results in subdivision of domain into

triangles in 2D and tetrahedron in 3D. Each of these triangles are known as fragment or
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simplices. Second, the fragments lying on the boundaries are subdivided so that each

fragment belongs to only one range. Third, the fiber components are determined and

is represented using a node. Fourth, if two fragments are adjacent to each other and

have identical values then the nodes corresponding to the fiber components are united

together. And if the fragments are adjacent and the nodes have different value then an

edge is added between them.

Next, the multi-resolution Reeb space is constructed from the finest resolution by

applying the property 3 defined previously. That is, the multi-resolution Reeb space

is constructed by unifying the adjacent nodes while the parent-child relationship is

maintained as shown in Figure FC3.1. The edges connected the nodes of same resolution

are also calculated. The parent and it corresponding child nodes are also determined at

this time by creating a union-find data structure. In this, if a node in the finer resolution

Reeb space have the same range value in the coarser resolution and the nodes are adjacent

to each other, then these nodes are united to form a single node in coarser resolution

Reeb space. In Figure FC3.1 (i) nodes =15, =16, =23 have same range value i.e. 2 for

first field and 0 for second field in corresponding coarser resolution and are adjacent to

each other in the finer resolution Reeb space, therefore, the nodes are united to form a

single node =3. Note that the finest resolution nodes will not have any child nodes and

the coarsest resolution nodes will not have their corresponding parent node.
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Algorithm 1 coarserResolutionReebSpace
Input: Finer resolution Reeb space MRSf (+ 5 , � 5 )

Output: Coarser resolution Reeb space MRSc(+2 , �2)

1: %CREATE COARSER NODES

2: Finer resolution nodes <0,<1 ∈ + 5

3: if IsSame(range(<0),range(<1) ∈ +2 then

4: if (IsAdajcent(<0,<1 ∈ + 5 ) then

5: =0← Union(<0,<1)

6: end if

7: end if

8: parent(<0) = =0, parent(<1) = =0

9: child(=0) = Union{<0,<1}

10: +2 = Add(=0)

11: Repeat for other nodes in RSf

12: %CREATE EDGES BETWEEN COARSER NODES

13: Nodes =0, =1 ∈ +2

14: if IsAdjacent(child(=0),child(=1)) ∈MRSf then

15: 40 = AddEdge(=0, =1)

16: end if

17: �2 = Add(40)

18: Repeat for other nodes in MRSc

Algorithm. The above algorithm is use to create a coarser resolution node of a coarser

Reeb space from the nodes of finer resolution Reeb space. Here MRSf represents the

Reeb space of finer resolution and MRSc represents the coarser resolution Reeb space.

The nodes <0 and <1 belonging to MRSf are merged to form a single node =0 which

belongs to MRSf . The above procedure is repeated for all the nodes of finer resolution.

An edge is created between two nodes say =0, =1 of coarser resolution if any of the child
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nodes of =0, =1 are adjacent to each other in finer resolution.

3.4.3 Computational Cost for Constructing the Multiresolutional Reeb Spaces

While computing the computational cost of multi-resolution Reeb spaces, we analyse

the cost of computing the Reeb space for finest resolution. The computation of finest

resolutionReeb space as dicussed in [9] is dependent on number of fragments (simplices)

# in the input mesh, the number of quantization levels&8 of each component field 58, the

number of functions defined A and the number of dimensions 3. The process of creating

a Reeb space at finest resolution costs $ (A#4 +#4U(#4)), where #4 = $ ((2A + 3)# 5 ),

# 5 = $ (:#) and U is the inverse Ackermann function. Here, # 5 is the number of

fragments or the number of nodes in the Reeb space, #4 is the number of adjacent

fragments or number of edges in the Reeb space and : is the product of number of

&8, the quantization level. This results in a polynomial time algorithm which is mostly

dependent on : . Since the construction of multi-resolution Reeb space is done from

finer to coarser resolution, the other Reeb spaces can be easily constructed by identifying

the adjacent fragments and identifying the parent-child relationship which is done in

$ (# 5 ) time. Hence constructing the finest resolution Reeb space is predominant in the

whole algorithm, therefore, the computational cost of the algorithm is polynomial.

3.5 Algorithm: Computing Similarity Measure

This section describes the second part of our method, i.e. computing a similarity

measure between two multi-resolution Reeb Spaces.
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3.5.1 Overview

First we give an overview of how the similarity is calculated between two multi-

resolution Reeb spaces. Firstly, corresponding to each node (<) of multi-resolution

Reeb space, an attribute is computed (<). Initially, the attribute < is calculated for the

finest resolution Reeb space using the degree of the node and number of edges in the

Reeb space that will be described later. Generally, the attribute can be given by:

< =
∑
2

2 (Eqn 3.1)

where c is the child nodes of m. The attribute < is the sum of attributes of child nodes

(2) of m. Note that, this rule is not applied for finest resolution Reeb space since they

do not have any child nodes.

The similarity between two nodes is calculated by finding the similarity between

their attributes sim(<,=), where < and = are nodes in two different Reeb space of

same resolution. This similarity satisfies following conditions: First, the similarity is

maximum when the nodes are matched with itself.

0 ≤ sim(<,=) ≤ sim(<,<) (Eqn 3.2)

Second, the sum of similarities for all the nodes matched with itself is 1.

∑
<∈MRS

sim(<,<) = 1 (Eqn 3.3)

The similarity between two multi-resolution Reeb spaces MRS1 and MRS2 is therefore,

defined as the sum of similarities of the attributes of for pair of nodes and is given by
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following equation:

sim(MRS1,MRS2) =
1
'
.

[ ∑
<∈MRS1,=∈MRS2

(
sim(<,=)

)@] 1
@

(Eqn 3.4)

where ' is the number of resolutions and @ is any positive real number. These pair

of nodes {(<0, =0), (<1, =1), . . .} are obtained using matching algorithm discussed in

section 3.5.3 and hence we call these pairs as matching pairs or simply MPAIRs. The

value of similarity for each of these pairs lies between [0,1] with a value near to 1

indicating, that the multi-resolution Reeb space are more similar. To find the maximum

similarity between two multi-resolution Reeb space it is required to match the nodes,

such that the topological consistency of the multi-resolution Reeb space is maintained.

The rules to maintain the topological consistency are discussed in section 3.5.2. The

MPAIRs are calculated from coarse to fine strategy and an overview of algorithm is

given below.

Algorithm. The algorithm is an overview of matching algorithm. The nodes in two

input multi-resolution Reeb space are inserted in their corresponding NLISTs. Then the

matching pairs are created between the nodes inserted in NLISTs. highestSimilarityN-

ode function finds the node in NLIST1 which has highest similarity with itself. This

node is known as chosenNode. Then the candidate node is obtained by using checkTopo-

logicalConsistency function which is described in section 3.5.2. This function helps

in finding the node that is topologically consistent with chosenNode. If there are more

than one candidate node that can match with chosen node then this ambiguity is resolved

by finding the node amongst the candidate nodes which has maximum matching with

chosen node. The maxMatching function uses the equation defined in equation Eqn 3.7.

Then update the MLIST1 and MLIST2 as described in section 3.5.2 and insert the pair

of chosenNode and candidateNode as an MPAIR. These MPAIRs are then used to find

the final similarity between the multi-resolution Reeb space.
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Algorithm 2MatchingAlgorithm
Input: Multi-resolution Reeb space MRS1,MRS2
Output: sim(MRS1,MRS2)
1: %INITIALIZATION
2: for node < ∈MRS1 do
3: NLIST1← <

4: end for
5: for node = ∈MRS2 do
6: NLIST2← =

7: end for
8: %MPAIR CREATION
9: for ∀< ∈ NLIST1 do
10: for ∀= ∈ NLIST2 do
11: chosenNode = highestSimilarityNode( m )
12: if IsTopologicallyConsistent (chosenNode, =) then
13: candidateNodes← =

14: end if
15: end for
16: for ∀8 ∈ candidateNodes do
17: candidateNode = maxMatching(chosenNode, i)
18: end for
19: UpdateMLISTs (chosenNode, candidateNode)
20: create MPAIR (chosenNode, candidateNode)
21: Remove chosenNode from NLIST1 and candidateNode from NLIST2
22: NLIST1← child(chosenNode)
23: NLIST2← child(candidateNode)
24: end for
25: %SIMILARITY CALCULATION
26: for ∀MPAIR(m,n) do
27: sim(MRS1,MRS2) += sim(<,=)
28: end for
29: sim(MRS1,MRS2) = 1

'
. sim(MRS1,MRS2)

30: return sim(MRS1,MRS2)
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3.5.2 Topological Consistency of Multiresolutional Reeb Space

To preserve topological consistency, the nodes in different branches of multi-

resolution Reeb spaces should not be matched. The following rules are introduced

in order to maintain topological consistency. First, two nodes in a particular resolution

of two different Reeb spaces can only be matched if they have same range value and

their parents are matched. The later condition is not applied on the nodes of coarsest

resolution of Reeb spaces, because they do not have any parent. The idea is that two

nodes can only be matched if they belong to same part of the domain, which is ensured

using the same range value.

Second, the two nodes in a particular resolution of two different Reeb spaces can

only be matched if they have same Matching Label List (MLISTs). MLIST is a list

of labels propagated to the node. This rule helps in avoiding the chance of matching

the nodes in different branches. The MLISTs are maintained for each dimension or

for each component field. For example, if we have a bivariate field then each node

in the Reeb spcae will have two MLISTs, MLIST1 for first dimension and MLIST2

for second dimension. To create MLIST for each node, we extend our Reeb space

to multi-dimension Reeb graph (MDRG). If a node in first dimension Reeb graph is

matched then an matching label (MLABEL) say - is propagated to all the nodes in a

direction of monotonic increase and decrease about the range value of each component

field. This way, we can label the branch to which the node belongs. We store the

MLABEL a matching list (MLIST) corresponding to each node. Once the nodes in

first dimension are matched, the label(s) in the MLIST is propagated to all the nodes

in the next dimension Reeb graph. Now similar to the first dimension matching, we

match the nodes and propagate a new MLABEL in the direction of monotonic increase

and decrease of range value to mark the branch with similar label. Hence the nodes

in second dimension will have two MLIST. The label propagation is done from those
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nodes whoes up-degree and down-degree is one. If the up-degree (label propagation is

done in upward direction) is more than one, then it is a case of ambiguity and hence the

label not propagated further and vice versa. This case occurs when we reach a critical

node, that is, at this node a single component splits or joins, a component is born or a

component dies. This is illustrated using an example shown in fig FC3.2.

Figure FC3.2: Label propagation is demonstrated for a matching pair in two MDRGs. For a
bivariate field, two lists of labels need to be maintained.

Let us consider a bivariate field at two different timestamps, and their corresponding

MDRGs as shown in the Figure FC3.2. Suppose the nodes with value 2/2 are matched.

We find the node in first dimension Reeb graph and mark the node with an MLABEL

- . The label is then propagated in the direction of monotonic increase and monotonic

decrease direction of the range value of the first component field. This way the MLIST

of nodes in the branch are updated with MLABEL - . If an MLABEL passes a node

which has either the up-degree or down-degree greater than one, then the MLABEL

is not propagated further. Once all the nodes are assigned with their corresponding

MLIST in first dimension Reeb graph or no more matching is possible, the nodes in

the second dimension are matched. The MLIST in first dimension is passed to all the

nodes in second dimension Reeb graph of the corresponding MDRG. Now each second

dimension Reeb graph is treated separately and the above procedure is repeated again.
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At the end, each node will consists of two MLISTs. If there are A fields then each node

will have A MLISTs. Note that Figure FC3.2 is to demonstrate the label propagation

and the MLISTs for all the nodes are not updated. We maintain MLISTs for the nodes

which are not yet matched. For the nodes which are already matched, the MLISTs is

unnecessary and need not be maintained.

Algorithm 3 IsTopologicallyConsistent(<,=)
Input: Nodes < ∈MRS1 and = ∈MRS2

Output: True/False

1: if range(<) ≠ range(=) then

2: return false

3: end if

4: if !(matching(parent(<), parent(=))) then

5: return false

6: end if

7: for each 3 do

8: if MLIST3 (<) ≠MLIST3 (=) then

9: return false {d is the dimension of multifield}

10: end if

11: end for

12: return true

3.5.3 Finding the Matching Node Pairs

In this subsection, we define how to find the MPAIRs or the matching node pair.

Initially, a list of nodes (NLIST) is created corresponding to each multi-resolution Reeb

space that need to be matched. We call these lists as NLIST1 and NLIST2. First, from

NLIST1 select a node which has maximum similarity with itself, that is sim(<,<). This

makes us choose a node which affects the final similarity the maximum.
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Second, select the node = from different multi-resolution Reeb space by applying

the define topological consistency rules. This means, that the node = should have same

range value as that of <, the parent node of = should match the parent node of < and

the MLISTs of = should be same as that of MLISTs of <. The creation of MLISTs is

described before in section 3.5.2. We call this node a candidate node.

Third, if there is no candidate node = that can match with <, then no MPAIR corre-

sponding to < is created, < is removed from NLIST1 and no MLABEL is propagated.

The process is then repeated for other nodes in the NLIST1. If there are more than

one candidate nodes that can match with <, then we select a node which has maxi-

mum matching function value mat(<,=) with <. This ensures that we always get a

better match. The matching function is defined below and the equation is given in

equation Eqn 3.7.

Finally, an MPAIR corresponding to nodes (<,=) is obtained. Then we remove node

<,= from NLIST1 and NLIST2 respectively. An MLABEL corresponding to each of

the branches of < and = are propagated and the MLIST is updated accordingly. Note

that, once the nodes are matched the MLIST corresponding to these nodes are no longer

maintained.

Definition of Matching Function. The matching function mat(<,=) is calculated by

using two aspects of the function. First, the loss loss(<,=) representing the final

decrease in similarity due to the matching of nodes < and = of an MPAIR. This loss is

given by following equation:

loss(<,=) = 1
2
{sim(<,<) + sim(=,=)} − sim(<,=) (Eqn 3.5)

The similarity decreases as the loss increases. Second, we define the matching function

by using adjacent nodes as an attribute. The adjacent nodes are taken into account
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because they define the structure of Reeb space. The attribute of adjacent nodes is

defined as:

adj(<) =
∑

0∈adj( [s,t),m)
0 (Eqn 3.6)

Hence, the matching function is defined as:

mat(<,=) = −loss(<,=) −
∑
[B,C)

loss(adj( [B, C),<),adj( [B, C), =) (Eqn 3.7)

3.5.4 Node Attributes and Similarity Functions

The attribute < of a node < consists of an attribute deg(m) and 4, where deg(m) is

the degree of the node and 4 is the number of edges in a particular Reeb space. While,

we can use other parameters such as volumetric area 0(<), we specifically use deg(m)

and 4 because the degree of a node can be used to represent the local topology of the

domain and dividing the degree with number of edges will result is a degree density.

Hence the degree density � (<) is given by:

< = � (<) = deg(m)
24

(Eqn 3.8)

The degree deg(m) is divided with 24 because each edge will be counted twice for each

node degree.

As described in section 3.5.1 the parameter � (<) is first calculated for the MPAIRs

at the finest resolution Reeb space and then calculated for coarser resolutions.

Hence the final similarity between the nodes of an MPAIR {<,=} is defined as:

sim(<,=) =min
(
deg(m)

24<
,
346(=)

24=

)
(Eqn 3.9)

where 4< is the number of edges in the Reeb space to which the node < belongs, 4= is
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the number of edges in the Reeb space to which the node = belongs and q is any positive

real number. This implies that similarity of a node < with itself is given as follows:

sim(<,<) = deg(m)
24

(Eqn 3.10)

and the summation of all such similarity is equal to 1.

∑
<∈MRS

sim(<,<) =
∑

deg(m)
24

= 1 (Eqn 3.11)

3.6 Implementation

We calculate the similarity metric described in the previous section using Visu-

alization Toolkit (VTK) [1] under the Joint Contour Net [9] and Multi-Dimensional

Reeb Graph (MDRG) [12] implementation framework. The implementation works for

a generic pair for multi-fields but is particularly designed for time-varying multi-fields.

The range of two multi-field at two consecutive timestamps may vary slightly, which

is fixed during the implementation by finding the maximum and minimum of both the

fields and fixing the range for both the data. The range is fixed as the minimum of both

the multi-fields and maximum of both multi-field of each component field. The imple-

mentation is for the multi-resolution data structure of multiple dimensions, and hence

to create coarser resolutions, it is required to fix the number of slabs as dyadic. The slab

width is calculated by finding the difference between the maximum and minimum range

value of two data and then dividing by the number of slabs which is always a dyadic

number. Next, we explain the two main steps required in our implementation.

I. Computing MRS: The multi-resolution Reeb space of a particular multi-field is

created by using finest resolution JCN. The implementation of JCN is same as described

in [9]. Then the number of slabwidth to divide the whole range into quantize ranges, are
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doubled to obtain the coarser resolution JCNs. The nodes of the coarser resolution JCNs

are created by uniting the nodes falling in one coarser range into a single node. The edges

are added between these coarser nodes based on their adjacency in its corresponding

finer resolution. Corresponding to each node in each of the JCNs, following information

is also maintained: its parent node and its corresponding child nodes.

II. Similarity Calculation: The similarity between twomulti-resolution is calculated by

first finding the MPAIRs between them. The MPAIR calculation is done from coarser

to finer resolution. First the nodes of MRS1 and MRS2 are inserted in NLIST1 and

NLIST2. Now one of the node is selected from NLIST1 which has maximum similarity

with itself. This similarity is calculated using the formulamentioned in equation Eqn 3.9.

The selected node is named as chosen node. Now we select a node from NLIST2 which

is topologically consistent with chosen node. Two nodes are topologically consistent

if their range values are same, their parent are also matched and their MLISTs are also

same. There can be more than one node in NLIST2 which are topologically consistent

to chosen node. This ambiguity is removed by selecting a node amongst all the selected

node which has highest matching with chosen node. The node obtained is named as

candidate node. Once the nodes are obtained the MLISTs are updated. For this the

corresponding MDRGs are obtained for the JCNs. We use the same implementation as

described in [12]. The MLABEL in the MLISTs are propagated as described in section

3.5.2. After this the chosen node and the candidate node forms the MPAIR. Once the

MPAIRs for all the nodes of each dimension are constructed, then the similarity for

each MPAIR is calculated using the equation Eqn 3.9. The similarity of each MPAIR

is summed and then divided by number of resolutions to obtain the similarity between

two MRSs.
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3.7 Applications

We now depict uses of the proposedMRS and the similarity metric with two different

datasets,(i) Fission data of Fermium Atom (ii) Scission data of Plutonium Atom.

An atom splits into two or more parts during the process of nuclear fission. During

the process some deformation of the atom nucleus takes place as the core of the atom

is stretched. This distortion is important and can be used to identify the topological

changes happening inside the atom. Identifying the exact timestamp where the atom

has been split in an n-dimension manifold is an important problem as the number of

components created after scission changes. The timestamp where the atom splits into

two or more fragments is known as the nuclear scission. Previously this problem has

been looked, and work has been done [14], but this a very time consuming and tiring task

as the physicists have to look into each geometry of the atom for each timestamp. Later

work has been done in [3] which again is used to handle the same problem. But in this

work, since data is projected from domain to range space, some information might get

lost and chances of losing important topological feature increase over the datasets. Our

method stores the topological feature in the proposed data-structure and the similarity

measure can be use to visualize these features by comparing two data structures for two

consecutive timestamps.

3.7.1 Fermium Atom Data

The dataset of Fermium-256 atom consists of the nuclear densities that represent the

heavy nucleus of the internal structure of an atom. The dataset consists of two spatial

densities, namely, proton density (p) and neutron density (n). We aim to find the time

stamp where the nuclear scission occurs. We experiment with sCF data [14] in which

the fermium atom undergoes symmetric compact fission. The dataset consists of 40
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timestamp (0-39) with a dimension of 19× 19× 19. We expect the major topological

change at site 26, as this at this time step the nucleus splits into two atoms.

Observation and Results. We experiment with a number of resolutions for the fermium

atom data. The range of values for spatial density of proton (p) is site 1 is 0.0 to 126.0

and the range of values for spatial density of neutron (n) is 0.0 to 139.0. This range may

vary slightly for each time-step. The plots in Figure FC3.3 shows the similarity measure

plot for the combination of, p (number of slabs 64) and n (number of slabs 64). We have

chosen the slabs based in the experiments done in [3] and [14]. We observe a sudden

change at time step 26 in Figure FC3.3 (c). We experiment with different values of @ to

check the results. Figure FC3.3 shows the plot for three different levels of resolutions

and value of @ is 1. We observe that as we the number of resolutions increases the

depression in the plot is observed at site 26.

Site 23 Site 24 Site 25 Site 26 Site 27

(a)

(b)

(1,1) (2,2) (8,8)(4,4)

Figure FC3.3: Plots for similarity measure for Fermium atom data. First row: Left to Right
are the similarity measure vs. the time step range [0-39] with number of resolutions as 1, 2, 3
and 4 respectively and @ as 1. The proposed similarity measure exhibits a prominent dip at site
26, which indicates a significant change. Bottom row: Geometry of Fermium atom nucleus at
different time-steps. The nucleus split at site 26 and can be seen in the geometry.
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3.7.2 Plutonium Atom Data

The dataset consists of nuclear scission data of plutonium atom. The dataset is a

multi-field data with two spatial densities i.e. proton density (p) and neutron density

(n). The densities are sampled on a 40× 40× 60 grid. The dataset if a negative log

transformed sample at 14 different time steps, namely [665, 670, 675, 680, 686, 687,

688, 689, 690, 692, 693, 694, 695, 699]. The nuclear scission occurred between time

step 690-692 and is reported in [14] and confirmed by the physicists.

Observation and Results. We experiment with number of resolutions for the plutonium

atom data. The range of spatial density of proton (p) is 7.0 to 216.0 and the range of

spatial density of neutron (n) is 6.0 to 214.0. These ranges may vary slightly for every

time-step. The plots in Figure FC3.4 shows the similarity measure for the combination

of, p (number of slabs 32) and n (number of slabs 128). These slabs are chosen carefully

based on the experiments done in [3] and [14]. We experiment with different values of

@ and the result shown in Figure FC3.4(a) is with @ value as 2000. We observe a sudden

change between time-stamps 690-692 which shows that a sudden change has occurred

at this time-stamp.
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Figure FC3.4: Plots for similarity measure for Plutonium atom data. (a) is the similarity measure
vs. the time step range [665-699] with number of resolutions as 2 and @ as 2000. The proposed
similarity measure exhibits a prominent dip between site 690-692 as the number of resolutions
increases, which indicates a significant change. (b) Geometry of Plutonium atom nucleus at
different time-steps. The nucleus split between site 690-692 and can be seen in the geometry.
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CHAPTER 4

CONCLUSION AND FUTUREWORK

In ourworkwe proposed two different approaches to find topological features in time-

varying multi-field data. In the first method, we proposed a fiber component distribution

as a feature descriptor for multivariate data. Then a novel method to extract topological

features between time-varying multi-field data has been proposed, by introducing a

distance measure between fiber-component distributions. The effectiveness of this

method is shown by applying it on different synthetic and real data. The proposed

distance measure can be used to find important timesteps and intervals and the features

at such time stamps [3]. Next we proposed a data structure that can store topological

information at different resolution for multi-field data. A similarity measure that can be

used to extract topological feature has also been introduced that can make comparative

analysis between the proposed data structure. The effectiveness of this method has again

been tested on different real datasets. The proposed data structure can store topological

features and the measure is able to extract the feature from time-varying multi-field data.

Despite the success of the two approaches, we still think there is a room for future

improvement. The first approach captures essential changes in the range space, but it

captures unimportant changes as well. These false changes are the main drawbacks of

this method. For example, in the plot for the Pt-Co data, we observe additional peaks.

To overcome this problem in future, we can find other distance measures between the
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Reeb Spaces [3]. The Reeb space could be studied in a subsequent step for detailed

analysis. The distance measure can also be computed for sub-domains, thereby allowing

for finer-grained analysis. In the second approach, extensive use of Reeb space and

its generalized algorithm JCN is made, for the construction of the data structure. The

future work includes designing a data structure directly from the domain and not relying

on Reeb space or JCN. Although the similarity measure between the data structure can

capture the topological features, we would still like to explore more similarity measures

to capture these features.
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