{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Check Tide Map\n", "==============\n", "\n", "Check if a given point is within a tide model domain\n", "\n", "OTIS format tidal solutions provided by Ohio State University and ESR \n", "- http://volkov.oce.orst.edu/tides/region.html \n", "- https://www.esr.org/research/polar-tide-models/list-of-polar-tide-models/\n", "- ftp://ftp.esr.org/pub/datasets/tmd/ \n", "\n", "Global Tide Model (GOT) solutions provided by Richard Ray at GSFC \n", "\n", "Finite Element Solution (FES) provided by AVISO \n", "- https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html\n", "\n", "#### Python Dependencies\n", " - [numpy: Scientific Computing Tools For Python](https://www.numpy.org) \n", " - [scipy: Scientific Tools for Python](https://www.scipy.org/) \n", " - [pyproj: Python interface to PROJ library](https://pypi.org/project/pyproj/) \n", " - [netCDF4: Python interface to the netCDF C library](https://unidata.github.io/netcdf4-python/) \n", " - [matplotlib: Python 2D plotting library](https://matplotlib.org/) \n", " - [ipyleaflet: Jupyter / Leaflet bridge enabling interactive maps](https://github.com/jupyter-widgets/ipyleaflet) \n", "\n", "#### Program Dependencies\n", "\n", "- `crs.py`: Coordinate Reference System (CRS) routines\n", "- `io.model.py`: retrieves tide model parameters for named tide models\n", "- `io.OTIS.py`: extract tidal harmonic constants from OTIS tide models \n", "- `io.ATLAS.py`: extract tidal harmonic constants from netcdf models \n", "- `io.GOT.py`: extract tidal harmonic constants from GSFC GOT models \n", "- `io.FES.py`: extract tidal harmonic constants from FES tide models \n", "\n", "This notebook uses Jupyter widgets to set parameters for calculating the tidal maps. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Load modules" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import IPython.display\n", "\n", "# import tide programs\n", "import pyTMD.crs\n", "import pyTMD.io\n", "import pyTMD.time\n", "import pyTMD.tools\n", "# autoreload\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# available model list\n", "model_list = sorted(pyTMD.io.model.ocean_elevation())\n", "# display widgets for setting directory and model\n", "TMDwidgets = pyTMD.tools.widgets()\n", "TMDwidgets.model.options = model_list\n", "TMDwidgets.model.value = 'GOT4.10'\n", "TMDwidgets.VBox([\n", " TMDwidgets.directory,\n", " TMDwidgets.model,\n", " TMDwidgets.atlas,\n", " TMDwidgets.compress\n", "])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# default coordinates to use\n", "LAT,LON = (32.86710263,-117.25750387)\n", "m = pyTMD.tools.leaflet(center=(LAT,LON), zoom=12,\n", " zoom_control=True, marker_control=True)\n", "# show map\n", "m.map" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# get model parameters\n", "model = pyTMD.io.model(TMDwidgets.directory.value,\n", " format=TMDwidgets.atlas.value,\n", " compressed=TMDwidgets.compress.value\n", " ).elevation(TMDwidgets.model.value)\n", " \n", "# read tidal constants and interpolate to grid points\n", "if model.format in ('OTIS','ATLAS','TMD3'):\n", " # if reading a single OTIS solution\n", " xi,yi,hz,mz,iob,dt = pyTMD.io.OTIS.read_otis_grid(model.grid_file)\n", "elif (model.format == 'netcdf'):\n", " # if reading a netCDF OTIS atlas solution\n", " xi,yi,hz = pyTMD.io.ATLAS.read_netcdf_grid(model.grid_file,\n", " compressed=model.compressed, type='z')\n", " # invert bathymetry mask\n", " mz = np.invert(hz.mask)\n", "elif (model.format == 'GOT'):\n", " # if reading a NASA GOT solution\n", " hc,xi,yi,c = pyTMD.io.GOT.read_ascii_file(model.model_file[0],\n", " compressed=model.compressed)\n", " # invert tidal constituent mask\n", " mz = np.invert(hc.mask)\n", "elif (model.format == 'FES'):\n", " # if reading a FES netCDF solution\n", " hc,xi,yi = pyTMD.io.FES.read_netcdf_file(model.model_file[0],\n", " compressed=model.compressed, type='z', version=model.version)\n", " # invert tidal constituent mask\n", " mz = np.invert(hc.mask)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def update_coordinates(sender):\n", " # leaflet location\n", " LAT,LON = np.copy(m.marker.location)\n", " # verify longitudes\n", " LON = m.wrap_longitudes(LON)\n", " # adjust dimensions of input coordinates to be iterable\n", " LON = np.atleast_1d(LON)\n", " LAT = np.atleast_1d(LAT)\n", " # read tidal constants and interpolate to grid points\n", " if model.format in ('OTIS','ATLAS','TMD3'):\n", " # if reading a single OTIS solution\n", " xi,yi,hz,mz,iob,dt = pyTMD.io.OTIS.read_otis_grid(model.grid_file)\n", " # convert coordinate systems of input latitude and longitude\n", " x,y = pyTMD.crs().convert(np.atleast_1d(LON), np.atleast_1d(LAT),\n", " model.projection, 'F')\n", " # adjust longitudinal convention of input latitude and longitude\n", " # to fit tide model convention (if global)\n", " if (np.min(x) < np.min(xi)) & (model.projection == '4326'):\n", " lt0, = np.nonzero(x < 0)\n", " x[lt0] += 360.0\n", " if (np.max(x) > np.max(xi)) & (model.projection == '4326'):\n", " gt180, = np.nonzero(x > 180)\n", " x[gt180] -= 360.0\n", " elif (model.format == 'netcdf'):\n", " # if reading a netCDF OTIS atlas solution\n", " # adjust longitudinal convention of input latitude and longitude\n", " # to fit tide model convention\n", " x,y = np.copy([LON,LAT]).astype(np.float64)\n", " lt0, = np.nonzero(x < 0)\n", " x[lt0] += 360.0\n", " elif (model.format == 'GOT'):\n", " # if reading a NASA GOT solution\n", " # adjust longitudinal convention of input latitude and longitude\n", " # to fit tide model convention\n", " x,y = np.copy([LON,LAT]).astype(np.float64)\n", " lt0, = np.nonzero(x < 0)\n", " x[lt0] += 360.0\n", " elif (model.format == 'FES'):\n", " # if reading a FES netCDF solution\n", " # adjust longitudinal convention of input latitude and longitude\n", " # to fit tide model convention\n", " x,y = np.copy([LON,LAT]).astype(np.float64)\n", " lt0, = np.nonzero(x < 0)\n", " x[lt0] += 360.0\n", " # update plot coordinates\n", " m.point.set_xdata(x)\n", " m.point.set_ydata(y)\n", " # refresh plot\n", " IPython.display.display(m.figure)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib widget\n", "# check coordinates on tide grid\n", "m.figure,ax = plt.subplots(num=1, figsize=(8.25,5.25))\n", "ax.imshow(mz, interpolation='nearest',\n", " extent=(xi.min(),xi.max(),yi.min(),yi.max()),\n", " origin='lower', cmap='gray')\n", "m.point, = ax.plot([],[],'r*')\n", "update_coordinates(None)\n", "# no ticks on the x and y axes\n", "ax.get_xaxis().set_ticks([])\n", "ax.get_yaxis().set_ticks([])\n", "# stronger linewidth on frame\n", "[i.set_linewidth(2.0) for i in ax.spines.values()]\n", "# adjust subplot within figure\n", "m.figure.tight_layout()\n", "IPython.display.clear_output(wait=True)\n", "m.marker.observe(update_coordinates)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 4 }