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Overview of the contribution

Prior methods:

▶ Induce inventory by clustering of word instances (Li and Jurafsky, 2015)
▶ Use existing inventories (Rothe and Schütze, 2015)

Our method:

▶ Input: word embeddings
▶ Output: word sense embeddings
▶ Word sense induction by clustering of word ego-networks
▶ Word sense disambiguation based on the induced sense representations
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Learning Word Sense Embeddings
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Word Sense Induction: Ego-Network Clustering

▶ The "furniture" and the "data" sense clusters of the word "table".
▶ Graph clustering using the Chinese Whispers algorithm (Biemann, 2006).
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Neighbours of Word and Sense Vectors

Vector Nearest Neighbours

table
tray, bottom, diagram, bucket, brackets, stack, bas-
ket, list, parenthesis, cup, trays, pile, playfield,
bracket, pot, drop-down, cue, plate

table#0
leftmost#0, column#1, randomly#0, tableau#1, top-
left0, indent#1, bracket#3, pointer#0, footer#1, cur-
sor#1, diagram#0, grid#0

table#1
pile#1, stool#1, tray#0, basket#0, bowl#1, bucket#0,
box#0, cage#0, saucer#3, mirror#1, birdcage#0,
hole#0, pan#1, lid#0

▶ Neighbours of the word “table" and its senses produced by our method.
▶ The neighbours of the initial vector belong to both senses.
▶ The neighbours of the sense vectors are sense-specific.
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Word Sense Disambiguation

1. Context Extraction
▶ use context words around the target word

2. Context Filtering

▶ based on context word’s relevance for disambiguation

3. Sense Choice
▶ maximize similarity between context vector and sense vector
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Word Sense Disambiguation: Example
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Evaluation on SemEval 2013 Task 13 dataset:
comparison to the state-of-the-art

Model Jacc. Tau WNDCG F.NMI F.B-Cubed

AI-KU (add1000) 0.176 0.609 0.205 0.033 0.317
AI-KU 0.176 0.619 0.393 0.066 0.382
AI-KU (remove5-add1000) 0.228 0.654 0.330 0.040 0.463
Unimelb (5p) 0.198 0.623 0.374 0.056 0.475
Unimelb (50k) 0.198 0.633 0.384 0.060 0.494
UoS (#WN senses) 0.171 0.600 0.298 0.046 0.186
UoS (top-3) 0.220 0.637 0.370 0.044 0.451
La Sapienza (1) 0.131 0.544 0.332 – –
La Sapienza (2) 0.131 0.535 0.394 – –

AdaGram, α = 0.05, 100 dim 0.274 0.644 0.318 0.058 0.470

w2v 0.197 0.615 0.291 0.011 0.615
w2v (nouns) 0.179 0.626 0.304 0.011 0.623
JBT 0.205 0.624 0.291 0.017 0.598
JBT (nouns) 0.198 0.643 0.310 0.031 0.595
TWSI (nouns) 0.215 0.651 0.318 0.030 0.573
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Conclusion

▶ Novel approach for learning word sense embeddings.

▶ Can use existing word embeddings as input.

▶ WSD performance comparable to the state-of-the-art systems.

▶ Source code and pre-trained models:
https://github.com/tudarmstadt-lt/SenseGram
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https://github.com/tudarmstadt-lt/SenseGram


Thank you and welcome to our poster!
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Evaluation based on the TWSI dataset: a large-
scale dataset for development
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