Workshop on Representation Learning for NLP 11 August, 2016, Berlin, Germany

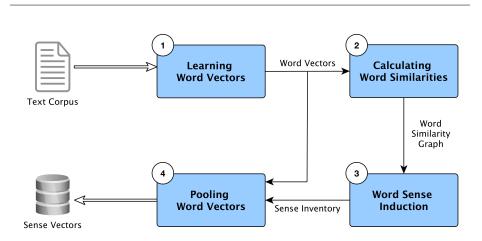
TECHNISCHE UNIVERSITÄT DARMSTADT

Making Sense of Word Embeddings

Maria Pelevina¹, Nikolay Arefyev², Chris Biemann¹ and Alexander Panchenko¹

¹Technische Universität Darmstadt, LT Group, Computer Science Department, Germany ²Moscow State University, Faculty of Computational Mathematics and Cybernetics, Russia

Overview of the contribution

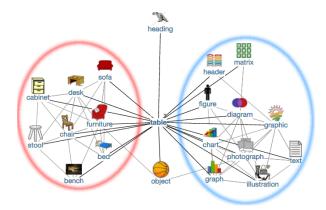


Prior methods:

- Induce inventory by clustering of word instances (Li and Jurafsky, 2015)
- Use existing inventories (Rothe and Schütze, 2015)

Our method:

- Input: word embeddings
- **Output:** word sense embeddings
- Word sense induction by clustering of word ego-networks
- Word sense disambiguation based on the induced sense representations



Learning Word Sense Embeddings

Word Sense Induction: Ego-Network Clustering

The "furniture" and the "data" sense clusters of the word "table".

Graph clustering using the Chinese Whispers algorithm (Biemann, 2006).

August 11, 2016 | 4

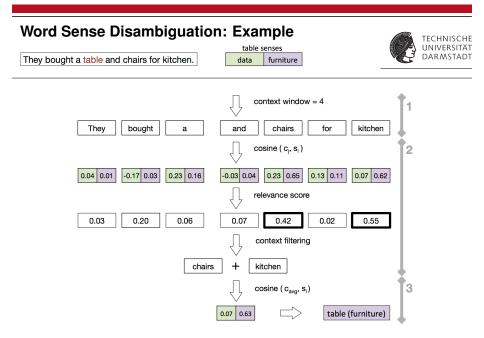
Neighbours of Word and Sense Vectors

Vector	Nearest Neighbours				
table	tray, bottom, diagram, bucket, brackets, stack, bas- ket, list, parenthesis, cup, trays, pile, playfield, bracket, pot, drop-down, cue, plate				
table#0	leftmost#0, column#1, randomly#0, tableau#1, top- left0, indent#1, bracket#3, pointer#0, footer#1, cur- sor#1, diagram#0, grid#0				
table#1	pile#1, stool#1, tray#0, basket#0, bowl#1, bucket#0, box#0, cage#0, saucer#3, mirror#1, birdcage#0, hole#0, pan#1, lid#0				

- Neighbours of the word "table" and its senses produced by our method.
- The neighbours of the initial vector belong to **both senses**.
- The neighbours of the sense vectors are **sense-specific**.

Word Sense Disambiguation

1. Context Extraction


use context words around the target word

2. Context Filtering

based on context word's relevance for disambiguation

3. Sense Choice

maximize similarity between context vector and sense vector

Evaluation on SemEval 2013 Task 13 dataset: comparison to the state-of-the-art

Model	Jacc.	Tau	WNDCG	F.NMI	F.B-Cubed
AI-KU (add1000)	0.176	0.609	0.205	0.033	0.317
AI-KU	0.176	0.619	0.393	0.066	0.382
AI-KU (remove5-add1000)	0.228	0.654	0.330	0.040	0.463
Unimelb (5p)	0.198	0.623	0.374	0.056	0.475
Unimelb (50k)	0.198	0.633	0.384	0.060	0.494
UoS (#WN senses)	0.171	0.600	0.298	0.046	0.186
UoS (top-3)	0.220	0.637	0.370	0.044	0.451
La Sapienza (1)	0.131	0.544	0.332	_	-
La Sapienza (2)	0.131	0.535	0.394	-	-
AdaGram, α = 0.05, 100 dim	0.274	0.644	0.318	0.058	0.470
w2v	0.197	0.615	0.291	0.011	0.615
w2v (nouns)	0.179	0.626	0.304	0.011	0.623
JBT	0.205	0.624	0.291	0.017	0.598
JBT (nouns)	0.198	0.643	0.310	0.031	0.595
TWSI (nouns)	0.215	0.651	0.318	0.030	0.573

August 11, 2016 | 8

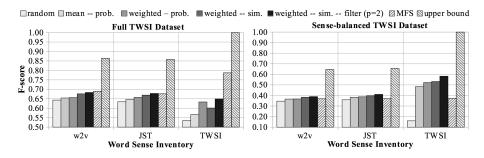
Conclusion

► Novel approach for learning word sense embeddings.

• Can use **existing word embeddings** as input.

WSD performance comparable to the state-of-the-art systems.

Source code and pre-trained models: https://github.com/tudarmstadt-lt/SenseGram



Thank you and welcome to our poster!

August 11, 2016 | 10

Evaluation based on the TWSI dataset: a largescale dataset for development

