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Preface

This document describes the mathematical models that are implemented and
used in the Tudat software, developed at TU Delft. The code is hosted at https:
//github.com/tudat-team/tudat-bundle, with the software documentation
at https://tudat.tudelft.nl (for Tudat, partly outdated) and https://

tudat-space.readthedocs.io/en/latest/ (for TudatPy, up to date).
This is meant to be a ’living document’, which means that we will add details

and models as time goes on, and it is (at least at present) not meant to be a
comprehensive overview of Tudat’s underlying mathematical models. In case
there are requests for (more) details on specific aspects of the Tudat software,
please contact the Tudat team. Since this is a living document, some chapters
and sections will be incomplete, in the sens that they do not fully describe all
relevant models. We have chosen to include new material at the subsection
level when we feel that this material is sufficiently presented to be of use to the
reader. For those chapters that are still at a very low stage of development, we
have added the note ”NOTE: This chapter is still very incomplete” at
the beginning of the chapter.

In addition to serving as a general mathematical model definition document,
this document will be used as lecture notes for the AE4868 (Numerical Astrody-
namics) and AE4866 (Propagation and Optimization in Astrodynamics) courses
in the M.Sc. curriculum of TU Delft. Consequently, in addition to presenting
the mathematical models, the manner in which these models will be used is also
presented in a number of cases.

The current version of the document derives from numerous sources, for
which the reader is referred to the bibliography. We have not included biblio-
graphic references for all equations, statements, etc. in this document.

Many thanks go to Erwin Mooij for comments and discussion on the contents
and notation of this document.
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Chapter 1

Basic Definitions and
Notation

1.1 Reference Frames - Definitions and Conven-
tions

Here, we introduce a consistent set of notations and definitions concerning ref-
erence frames, which we will use throughout this document. Details and def-
initions of specific references frames can be found in numerous sources (e.g.
Vallado and McClain, 2001)

We define a reference frame by two properties: its origin, and its orientation.
With this distinction, the term ’inertial’ reference takes on a double meaning.
We must distinguish between:

• An inertial origin: the origin of the frame is fixed in space (or moving
with a constant velocity). A typical inertial origin is the solar system
barycenter (SSB).

• An inertial orientation: the frame is not rotating, in the sense that its axes
are fixed w.r.t. distant reference points (e.g. quasars),

Both definitions are in practice impossible to fully realize. Nevertheless, in
practice we use a slight abuse of terminology, by using the term ’inertial’ (instead
of the more precise pseudo-inertial) to represent our approximations to these
concepts.

In Tudat, all states which are retrieved directly from the environment (e.g.
from a body object) are expressed in the same frame. This frame is defined
by the user at the start of a simulation, and must remain fixed thereafter. We
refer to this frame as the global frame, defined by the global origin and global
orientation. The origin may be defined as inertial (I, represents the SSB), or it
may be fixed to the center of mass of any of the bodies in the simulation. The

1



2 CHAPTER 1. BASIC DEFINITIONS AND NOTATION

global orientation must be inertial, and current options are limited to Spice-
defined J2000 and ECLIPJ2000 frames. In the following, the selected inertial
orientation is denoted by I.

For frames with non-inertial orientations, we use the same index for the body
itself, as for its body-fixed frame. That is, we use a superscript (C) to refer to
the frame whose orientation is fixed to a body C, and use C for a frame with
origin at body C.

1.2 States - Notation

In this section, we define our basic notation for translational states, accelera-
tions, rotations, etc. Throughout this document, we write vectors are in bold,
with a lower-case symbol a, and matrices/tensors in bold, with an upper-case
symbol A.

1.2.1 Translational States

We use r and v for Cartesian position and velocity, and x = [r;v]T for the
Cartesian translational state vector. We represent Cartesian positions of body
A w.r.t. body B (e.g. with the origin at body B) as r

BA
(and similarly for

velocity and full state). Whenever deemed useful, we will separate subscripts by
a comma, so r

BA
and r

B,A
are simply different notations for the same quantity.

We use a superscript to represent the orientation of the reference frame in
which a vector is expressed, so that r(C)

BA
represents the position of A, w.r.t. the

center of mass of B, expressed in frame C.
To simplify the notation when possible, we omit the superscript when the

orientation of the frame is inertial:

r
BA

= r(I)
BA

(1.1)

Also, we omit one of the subscripts when the origin w.r.t. which the vector is
expressed is the inertial origin, so:

r(C)
A

= r(C)
IA

(1.2)

r
A
= r(I)

IA
(1.3)

and therefore:

r
BA

= r
A
− r

B
(1.4)

Whenever possible, we will use the common notation of Eqs. (1.1) and (1.3).
There are numerous possible representations for a translational state. We

use x
BA

to denote the Cartesian state of body A w.r.t. body B. To represent a
Keplerian state, we will use the symbol χ

BA
to (e.g. x

BA
in Keplerian elements

w.r.t. body B). For a general, non-Cartesian, representation of a translational
state, we will use x̃

BA
. Such states need not be of size 6, and can consist of

Modified Equinoctial elements, Kepler elements, etc.
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1.2.2 Accelerations

We denote an acceleration as a, where the acceleration exerted by body B on
body A is denoted by a

BA
. The total acceleration acting on a body A is denoted

as a
A
, so that:

a
A
=
∑
B

a
BA

(1.5)

Here, we have used the same convention as in Eq. (1.1), implicitly assuming
that the acceleration is denoted in a frame with inertial acceleration, using the
default notation:

a
BA

= a(I)
BA

(1.6)

Thus far, we have assumed that the accelerations are computed in a frame
with an inertial origin. For most types of acceleration, changes in this origin do
not influence their formulation. For some situations, the frame origin C will,
however, result in a modification of the acceleration. This is discussed in more
detail in Section 4.1.4, where the third-body gravitational perturbations are
introduced. To explicitly denote such a situation, we use the notation (a

BA
)C

to denote the acceleration exerted by B on A, in a frame centered on C. If
frame C is an inertial origin, we omit the subscript, so:

a
BA

= (a
BA

)I (1.7)

Also, in cases where the acceleration a does not depend on the frame origin C, we
omit the subscript from (a

BA
)C , as in such cases we will have (a

BA
)C = (a

BA
)I ,

and we revert to the notation of Eq. (1.7).

1.2.3 Rotations

A rotation between two frames can be represented in many equivalent forms. A
typical formulations is the directional cosine matrix (DCM; also termed rotation
matrix here), which may be formulated in terms of Euler angles. Alternatively,
formulations such as quaternions or modified Rodrigues parameters may be
used. In this document, rotations shall be represented as rotation matrices,
unless explicitly indicated otherwise.

Rotation matrices representing an elementary rotation of an angle θ about
the x, y and z axes are denoted as Rx(θ), Ry(θ) and Rz(θ), respectively. The
rotation matrix from frame A to frame B is denoted as R(B/A).

Transforming a translational state vector x from a frame C to a frame D is
done by:

x(D) =

(
R(D/C) 03×3

Ṙ(D/C) R(D/C)

)
x(C) (1.8)

where Ṙ(D/C) is the time derivative of the rotation matrix R(D/C).
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Due to their orthonormality, rotation matrices obey the following properties:

R(B/I) =
(
R(I/B)

)T
(1.9)

=
(
R(I/B)

)−1

(1.10)

Ṙ(B/I) =
(
Ṙ(I/B)

)T
(1.11)

The angular velocity vector of frame A w.r.t. frame B, expressed in frame
C, is denoted as ω(C)

BA
. Typically, this vector is expressed in the frame A, so

that we often use the default notation:

ω
BA

= ω(A)
BA

(1.12)

Note that this default notation, in which the frame orientation superscript is
omitted, is different from that for translational state and acceleration vectors
in Eqs. (1.1) and (1.6).

Moreover, when the frame w.r.t. which the angular velocity is expressed is
the inertial one, we write:

ω(C)
A

= ω(C)
IA

(1.13)

ω
A
= ω(A)

IA
(1.14)

From the rotation matrix and its time-derivative, the angular velocity vector
can be computed: [

ω
(A)
A,B

]
×
= Ṙ(A/B)R(B/A) (1.15)

where the [∗]× notation is defined by the cross product:

[a]× b = a× b (1.16)

Transformation of the angular velocity vector is achieved by:

ω(C)
BA

= −ω(C)
AB

(1.17)

ω(D)
BA

= R(D/C)ω(C)
BA

(1.18)

similarly to position and velocity vectors.



Chapter 2

Environment Models

2.1 Rotation Models

The rotation model of a body B is responsible for computing the rotation matrix
R(B/I) from the inertial frame I to a frame fixed to body B, and its time
derivatives Ṙ(B/I). From these matrices, the angular velocity vector ω

B
can

also be computed as per Eq. (1.15).

2.1.1 Simple Rotation Model

This basic rotation model assumes that the body has a rotation axis that is in a
frame with inertial orientation, and that the body has a constant rotation rate
about this fixed axis. The direction of the pole in the inertial frame is defined
by the right ascension α and declination δ of the pole (defined in the global
frame). The first intermediate rotation to frame B′′ is then defined by:

R(B′′/I) = Rx(π/2− δ)Rz(α+ π/2) (2.1)

The direction of the body’s prime meridian at a reference epoch t0 is parame-
terized by the angle W0, leading to the second intermediate rotation:

R(B′/I) = Rz(W0)R
(B′′/I) (2.2)

R(B/I)(t0) = R(B′/I) (2.3)

Now, given a rotation rate ω, we have:

R(B/I)(t) = Rz (ω(t− t0))R
(B′/I) (2.4)

where the only time dependency lies in the first Rz matrix.
The time derivative of this rotation matrix is easily obtained from:

Ṙ(B/I)(t) = ωṘz (ω(t− t0))R
(B′/I) (2.5)

Model inputs

5



6 CHAPTER 2. ENVIRONMENT MODELS

• Constant pole right-ascension and declination α and δ.

• Prime meridian location at initial epoch W0

• Initial epoch t0

• Angular rotation rate ω of the body

2.2 Gravity Fields

Gravity fields formulations are defined by the manner in which they express the
gravitational potential U . Derived computations, such as potential gradients
(accelerations), and potential Hessians (acceleration partials) are discussed in
Section 4.1 on accelerations and Section ?? on partial derivatives of accelera-
tions, respectively. We denote the gravitational potential of body B, evaluated
at the location of body A as UB(rBA

).
The potential of a point mass is given by the following well-known equation:

UB(rBA
) =

µ
B

||r
BA

||
(2.6)

The total potential U of many point masses Bi can be computed from:

U(r
A
) =

∑
i

UBi(rBiA
) (2.7)

These equations can be used to define the gravitational potential of a full body,
by integrating it over the body’s volume VB , see Fig. (2.1):

UB(rBA
) = G

∫
B

ρ(s)dVB

||r
A
− s||

(2.8)

where s denotes the point inside the body at the volume element dVB , and
ρ(s) defines the body’s internal mass distribution. Note that, since only scalar
quantities are required in the above formulation, it is invariant under frame
origin/orientation changes of the vector r

A
− s.

For some applications, in particular those involving gravitationally interact-
ing natural bodies, it will be useful to decompose the potential into a point mass
contribution UB̄ , and an extended-body contribution UB̂ , so that:

UB = UB̄︸︷︷︸
point mass

+ UB̂︸︷︷︸
extended body

(2.9)

where the UB̄ can always be written as Eq. (2.6), and any deviations from a
point-mass gravity field are defined by UB̂ (see, for instance, Section 2.2.2 for
the spherical harmonic representation). These deviations are sometimes termed
the ’extended-body’ potential.
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O

B1
B2

B3

Bn

A
rA

r1

O
A

rB

rA

B

dmB

s

Figure 2.1: Graphical representation of potential due to many point masses
(left), as per Eq. (2.7), and due to a single extended body (right), as per Eq.
(2.8).

2.2.1 Point-mass gravity field

For a point-mass, the potential UB(rBA
) is expressed directly by Eq. (2.6). We

note that this expression is also valid for bodies for which the internal mass
distribution ρ(s) is spherically symmetric, as long as the potential is evaluated
outside the body B.

For this gravity field model we have, in the decomposition of Eq. (2.9):

UB̄ = UB (2.10)

UB̂ = 0 (2.11)

Model inputs

• Gravitational parameter of body µ
B

2.2.2 Spherical Harmonic Gravity Field

There are numerous ways to represent deviations from spherical symmetry (see
Section 2.2.1) when expressing a body’s gravitational potential. A typical for-
mulation in astrodynamics is the spherical harmonic expansion, for which:

UB(rBA
) =

∞∑
l=0

l∑
m=0

UB,lm (2.12)

UB,lm = µ
B

(
Rl

rl+1

)
P̄lm(sinϕ)

(
C̄lm cosmθ + S̄lm sinmθ

)
(2.13)

Here, C̄lm and S̄lm represent fully-normalized1 spherical harmonic coefficients
(at degree l and order m) of body B. We typically do not add an explicit
index for the body to which C̄lm and S̄lm belong, this being implicit due to
the B subscript in the lefthand side of Eq. (2.13). In specific cases where we

1A number of normalizations are used in different disciplines for spherical harmonics, we
will only use the ’fully normalized’ formulation, which we will refer to as ’normalized’ from
hereon.
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want to explicitly specify that coefficients belong to a body B, we write C̄B,lm

and S̄B,lm. The symbol R denotes the gravity field’s reference radius (typically
the equatorial radius), r represents the distance between the centers of mass of
bodies A and B, and ϕ and θ represent the latitude and longitude of body A,
expressed in a frame with its origin at the center of mass of body B, and fixed
to body B. That is, we have:

r(B)
BA

= R(B/I)r
BA

(2.14)

θ = θ
(
r(B)
BA

)
(2.15)

ϕ = ϕ
(
r(B)
BA

)
(2.16)

so that ϕ and θ depend on the inertial positions of bodies A and B, as well as
the orientation of body B. We do not add the sub/superscripts to the angles to
keep the formulation of the spherical harmonics tractable.

In Eq. (2.13), the coefficients C̄lm and S̄lm represent the deviations from
spherical symmetry. The degree/order zero (l = m = 0) represents the point-
mass contribution of body B. Therefore, we must have UB,00 equal to Eq.
(2.6), leading to the fact that C00 = 1. Additionally, since terms UB,l0 (e.g.,
the order m is zero) are invariant under changes in S̄lm, see Eq. (2.13), S̄l0 = 0
is undefined.

The series expansion in Eq. (2.13) converges only for r > R, and is only
a valid representation for the potential outside of the body’s circumscribing
sphere. That is, outside the the smallest sphere which circumscribes all mass of
the body, with the sphere having its center at the origin (typically the center
of mass). This sphere is termed the Brillouin sphere. For typical spacecraft
situations this condition is automatically satisfied, but it may not be for close
orbits of highly irregular bodies, or ascent/descent trajectories at low altitudes.

The expansion in Eq. (2.12) contains an infinite number of terms. For
practical applications, the series is truncated at a maximum degree lmax, so
that the first summation (over l) is done up to l = lmax. For some cases, it is
also desirable to define a maximum order mmax, leading to the general:

UB(rBA
) =

lmax∑
l=0

min(l,mmax)∑
m=0

UB,lm (2.17)

Alternatively, one may define a set of degree/order combinations {(l,m)} over
which to sum the potential (e.g. only (l,m)=(2,0), (2,2) and (3,0)).

In contrast to the normalized formulation given in Eq. (2.13), the grav-
itational potential may also be represented in unnormalized coefficients and
Legendre polynomials, for which:

UB,lm = µ
B

(
Rl

rl+1

)
Plm(sinϕ) (Clm cosmθ + Slm sinmθ) (2.18)
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where the transformation from unnormalized to normalized coefficients follows
from:

N̄lm =

√
(2− δ0m)(2l + 1)(l −m)!

(l +m)!
(2.19)

P̄lm = N̄lmPlm (2.20)

(C, S)l,m = N̄lm

(
C̄, S̄

)
l,m

(2.21)

The degree-two unnormalized coefficients can be used directly as input to com-
pute a body’s inertia tensor (see Section 2.3). The degree-one unnormalized
coefficients are directly related to a body’s center-of-mass (denoted r̄) as:

z̄ = C10R, x̄ = C11R, ȳ = S11R (2.22)

Typically, these coefficients are zero, implicitly assuming that the center of mass
coincides with the origin of the frame in which the gravity field coefficients are
defined.

The zonal (order 0) unnormalized coefficients of degree l are sometimes dis-
tributed as coefficients Jl, for which:

Jl = −Cl,0 = N̄lmC̄l,0 (2.23)

We stress that the physical information contained in the normalized and unnor-
malized coefficients is identical, and they merely represent different conventions
for disseminating this information.

In the above, we have written the spherical harmonic coefficients as constant.
In practice, they may be time-dependent quantities. Model for time-variations
of these coefficients are discussed in Section 2.4.2.

Finally, we note that for the extended body contribution to the gravity field,
as per the decomposition of Eq. (2.9), we then have:

UB̂(rBA
) =

∞∑
l=1

l∑
m=0

UB,lm (2.24)

Model inputs

• Gravitational parameter of body µ
B

• Spherical harmonic coefficients Clm and Slm or normalized spherical har-
monic coefficients C̄lm and S̄lm

• Maximum degree lmax and maximum ordermmax or a set of degrees/orders
(l,m)

• Gravity field reference radius R
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2.3 Inertia Tensor

The inertia tensor I of a body B is defined by its interior mass distribution
from:

I
(B)
B =

∫
B

ρ
(
s(B)

)
·
(
||s||213×3 − s(B) ·

(
s(B)

)T)
dVB (2.25)

where the quantities in the integral are the same as in Eq. (2.8), with the
exception that the frame orientation of the vector s is now explicitly denoted.
We use the following default notation for the inertia tensor:

IB = I
(B)
B (2.26)

That is, in contrast to most other quantities (positions, accelerations, etc.), we
omit the superscript for the frame in which the tensor is defined for the case
where it is written in the frame fixed to the body itself. If needed, the inertia
tensor is transformed to a different frame by:

I
(A)
B = R(A/B)IBR

(B/A) (2.27)

which represents the inertia tensor of body B, expressed in frame A.
The separate components of the tensor are typically referred to explicitly as:

IB =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Iyz

 (2.28)

where the diagonal elements are termed the moments of inertia, and the off-
diagonal terms the products of inertia. As a matter of convention, the products
of inertia are in some cases preceded by a minus sign in Eq. (2.28). We do not
follow this convention here.

There exists a simple relation between the inertia tensor, and the degree 2
unnormalized spherical harmonic gravity field coefficients (see Section 2.2.2):

IB = MR2

C20

3 − 2C22 −2S22 −C21

−2S22
C20

3 + 2C22 −S21

−C21 −S21 − 2C20

3

+ Ī13×3

 (2.29)

where all quantities (mass, reference radius, spherical harmonic coefficients) are
properties of the gravity field of body B. The only exception is Ī, which rep-
resents the normalized mean moment of inertia, which is equal to the average
value of the diagonal of I. Therefore, when a body is endowed with a spherical
harmonic gravity field, one only needs to define Ī to uniquely set its inertia
tensor. Note that, as with the gravity field coefficients, the entries of the inertia
tensor may be time-dependent (Section 2.4.2).

Model inputs

• Tensor components Ixx, Iyy, Izz, Ixy, Ixz and Iyz, or Ī and degree-two
spherical harmonic gravity field.
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2.4 Gravity Field Variation Models

The formulations for the potential in Section 2.2 was written as U = U(r). This
makes the implicit assumption that the interior mass distribution ρ(s) of a body,
as used in Eq. (2.8) is time-invariant. For detailed models, however, it may be
necessary to include time-variations in the gravity field, so that U = U(r, t).
These changes can be due to tidal deformation, mass transport, mass loss, etc..
Such variations in the gravity field are typically (but not necessarilly) formulated
and disseminated as variations in the spherical harmonic coefficients C̄lm and
S̄lm, as used in Eq. (2.13).

2.4.1 Tidal gravity field variations

This model for variations in the gravity field of a solid body B due to any
number of tide-raising point masses (perturbers) can be written as follows for
coefficients at a single dergee and order l and m:

∆C̄lm − i∆S̄lm =
1

2l + 1

∑
j

k
(j)
lm

µj

µ

(
R

rj

)l+1

P̄lm(sinϕj) (cosmθj − i sinmθj)

(2.30)

where quantities without subscripts represent properties of the body B for which
the gravity field’s time variations are under consideration. The summation runs
over all tide-raising bodies j, where µj is the gravitational parameter of the
tide-raising body j, and rj , ϕj and θj represent the spherical position of body
j in a frame fixed to body B

The Love number k
(j)
lm is the tidal Love number at degree l, and order m,

at the forcing frequency of body j. In case only a single deforming body is
considered (or the frequency-dependence of the Love numbers is omitted), the
symbol klm can be used instead2. In addition, if the Love number is assumed
independent of the order m, we only consider the Love number kl.

The Love number can be either a real or complex number. In the case that
the Love numbers are complex, the imaginary part represents the rate of tidal
dissipation through:

ℑ(kl) = − kl
Ql

(2.31)

where Q represents the quality factor of the tidal dissipation at degree l (omit-
ting the m subscript and (j) superscript). Eq. (2.30) is only valid for perturbers
j in a near-spherical and near-equatorial orbit around body A. In essence,
adding an imaginary part to kl introduces a constant longitudinal lag angle ∆θj

2Note that in this formulation, a single forcing frequency due to a body j is assumed.
Higher-order harmonics representing tidal deformation at frequencies due to the combined
forcing of multiple bodies, or the situation with a tide-raising body in a non-spherical orbit,
are ignored



12 CHAPTER 2. ENVIRONMENT MODELS

into the location of the tidal bulge.

Model inputs

• A list of tide-raising bodies j

• A list of considered degrees l and orders m

• A set of Love numbers k
(j)
lm for gravity field variations at degree l and order

m, due to body j or klm, without dependency on forcing body j or kl
without dependency on degree l and forcing body j

2.4.2 Tabulated gravity field variations

This general gravity field variation model takes two time series ∆Clm(ti), ∆Slm(ti),
defined at a discrete set of times ti, for any degrees/orders l,m, and uses these
as input to an interpolator to compute continuous time series ∆Clm(t), ∆Slm(t).

Model inputs

• Gravity field variations time-series ∆Clm(ti) and ∆Slm(ti), at times ti

• Interpolation settings

2.5 Atmosphere Models

In dynamical modelling, atmosphere models are primarilly used to generate
values for the density ρ at a given point in space. We distinguish between
standard atmospheres, which only depend on the altitude over the body (not
on latitude, longitude or time) and reference atmospheres such as NRLMSISE-
00 and EMCD, which can have a much more complicated position- and time-
dependent formulation.

In addition to the density, atmosphere models produce values for the local
temperature T , pressure p, as well as the atmospheric composition. In case the
ideal gas law is assumed to hold, we have the following relation:

p = ρRT (2.32)

Properties of the atmospheric composition that may be required are the mean
molar mass M, the specific gas constant R and the ratio of specific heats γ.

2.5.1 Exponential Atmosphere

An exponential atmosphere is a highly simplified model, in which the atmo-
spheric properties are assumed to only depend on the altitude h. It uses the
following model for the density:

ρ = ρ0e
−h/H (2.33)
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where ρ0 is the density at h = 0, and H is a scale height. This scale height is
related to the atmospheric properties as:

H =
RT

Mg
(2.34)

Since the gravitational acceleration g is approximately constant over the al-
titude ranges where exponential atmospheres are typically applied, the model
assumptions are roughly met by assuming constant temperature T and compo-
sition (through the molar mass M) of the atmosphere. Atmospheric pressure is
typically computed from the ideal gas law when using this model.

The exponential atmosphere model can be used in a ’piecewise’ manner,
where different values of H and ρ0 are used over different altitude ranges. Such
an option is not included in Tudat, where these values are constant over the full
altitude range.

Model inputs

• Scale height H

• Density at zero altitude ρ0

2.6 Ephemeris Models

Ephemerides provide the state x
A
of a celestial body A as a function of time.

In many cases, a priori ephemerides, for instance disseminated in the form of
Spice kernels, are used to retrieve the states of natural bodies. In addition to
such pre-defined ephemerides, the state of a (celestial) body may be represented
by a number of other models.

Each ephemeris of a body A is defined w.r.t. some central point B, which
can be but need not be an inertial origin. Ephemerides are generally defined in
a frame with an inertial orientation. In Tudat, the ephemeris orientation must
be set to the global frame orientation.

2.6.1 Kepler Ephemeris

This ephemeris model assumes that the body A is in an unperturbed Kepler
orbit w.r.t. body B. Given an initial Keplerian state χ0, an initial time t0, and
an effective gravitational parameter µ̄

B
, this ephemeris model propagates the

orbit to a time t by:

M = M0 + n(t− t0) (2.35)

with M and n the mean anomaly, and the constant mean motion, respectively.
Since all other Keplerian elements remain constant for this unperturbed model,
the Cartesian state x

BA
is obtained by a simple Keplerian-to-Cartesian coordi-

nate conversion.
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Finally, note that the effective gravitational parameter µ̄
B

is only equal to
the actual gravitational parameter µ

B
of body B, if body A is assumed to be

massless (so if µ
A
/µ

B
→ 0). If body A is massive, we have:

µ̄
B
= µ

B
+ µ

A
(2.36)

as deduced from Eq. (4.14).

Model inputs

• Initial Kepler elements χ0

• Initial time t0

• Central body effective gravitational parameter µ̄
B

2.6.2 Spice Ephemeris

The Spice toolbox underlies much of the solr system ephemerides used in Tu-
dat. Spice uses so-called ’kernels’ to disseminate ephemerides, which are large
(binary) files containing the required data. When using Spice to extract an
ephemeris, the position r

BA
(t) is extracted from these kernel files.

Model inputs

• Name (or other identifier) of body A and B

2.6.3 Tabulated Ephemeris

This general ephemeris model takes a time series for the state r
BA

(ti), defined at
a discrete set of times ti, and uses these as input to an interpolator to compute
continuous time series r

BA
(ti). Such a model is often used to create a continuous

ephemeris from the result of a numerical integration.

Note that a tabulated may be created from any other type of ephemeris,
by evaluating this ephemeris at a discrete set of times, and then creating a
tabulated ephemeris from the resulting data. A typical example is the Spice
ephemeris. Evaluating the Spice ephemeris is a relatively slow computational
process, and it may be more efficient to create a tabulated ephemeris from a
Spice ephemeris before performing the numerical propagation.

Model inputs

• State time-series r
BA

(ti), at times ti

• Interpolation settings
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2.7 Shape Models

In dynamical modelling, a shape model is primarilly used to convert a relative
state w.r.t. a body’s center of mass, to quantities such as the local altitude,
longitude and latitude w.r.t. that body. In applications on exo-atmospheric
flight, the influence of the shape model is relatively minor. For atmospheric,
in particular low-altitude, dynamics the influence of the body shape becomes
more influential. We stress here that shape and gravity field models are in
principle decoupled entities. Although there is typically a strong correlation
between overall shape and topography of a body and its gravity fiels, this link
is neither direct nor unique: for a given body shape, an infinite set of gravity
fields is possible, depending on the mass distribution inside the body. Therefore,
changing a body’s shape model does not automatically change its gravity field.

2.7.1 Spherical Shape

The spherical shape model has only a single free parameter: its radius R. Due
to its symmetry, the computation of the local altitude h is independent of the
frame orientation in which an orbiting body’s position is expressed and, for any
frame C, we have:

h = ||rC
BA

|| −R (2.37)

Model inputs

• Body radius R

2.7.2 Oblate Spheroidal Shape

This model represents a sphere that is symmetrically flattened at its poles, to
obtain an oblate spheroid. The shape is longitudinally, but not latitudinally,
symmetric. The altitude h, body-fixed longitude θ, and geodetic latitude ϕ′ are
related to the body-fixed position r(B)

BA
by the following implicit eqution:

r(B)
BA

=

 (N + h) cosϕ′ cos θ
(N + h) cosϕ′ sin θ(
(1− f2)N + h

)
cosϕ′

 (2.38)

N =
Re√

1− f(2− f) sin2 ϕ′
(2.39)

which must be solved implicitly for the geodetic position. In the above equa-
tions, where the flattening f of the body is defined from:

f =
Re −Rp

Re
(2.40)
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with Rp the body’s polar radius.

Model inputs

• Two out of the following three: Body polar radius Rp, body equatorial
radius Re, body flattening f



Chapter 3

System Models

NOTE: This chapter is still very incomplete

3.1 Aerodynamic Coefficients

Aerodynamic force coefficients are a normalized representation of the aerody-
namic force fa. Two typical representations can be found in literature, the force
coefficients in the aerodynamic frame (CD, CS , CL), and the force coefficients in
the body-fixed frame, of the vehicle A (Cx, Cy, Cz):

Sref

CD

CS

CL

 = − f
(Aero)
a

1
2ρv

2
air

(3.1)

Sref

Cx

Cy

Cz

 =
f
(A)
a

1
2ρv

2
air

(3.2)

where Sref denotes the reference area associated with the coefficients, ρ denotes
the local freestream atmospheric density and vair denotes the vehicle’s airspeed.
The difference in sign between the two cases is a matter of convention (in the
definition of the two sets of coefficients). The airspeed vair(= ||vair||) defines the
relative speed of the vehicle w.r.t. the freestream flow v∞ of the atmosphere,
so:

vair = v
BA

− v∞ (3.3)

A typical case is one where the atmosphere is assumed to corotate with the
central body. In this case, we have:

v∞ = Ṙ(I/B)r(B)
BA

(3.4)

which gives the freestream velocity v∞ in the frame with inertial orientation.
Typically, any deviations of freestream velocity from this corotating model are
defined by a wind model, providing wind velocities vw.

17
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Depending on the user’s definition, aerodynamic coefficients may be a func-
tion of any number of properties of the vehicle and/or environment. Typical
parameters are freestream Mach number M∞ and vehicle angle-of-attack α and
sideslip angle β, as well as control surface deflections δi (for a control surface i).



Chapter 4

Acceleration Models

4.1 Gravitational Acceleration Models

The gravitational acceleration of a body B, acting on a point mass body A, as
expressed in a frame with inertial origin can be written as:

a
BA

= ∇UB(rBA
) (4.1)

Here, UB represents the gravitational potential of body B, and ∇ = ∂/∂r (e.g.
the gradient w.r.t. inertial position). Eq. (4.1) indicates that the acceleration
acting on A is equal to the gradient of the potential of body B, evaulated at
the location of body A.

We can decompose the total acceleration between two arbitrary masses as
follows, splitting the contributions of point masses and extended bodies, as in
Eq. (2.9):

aBA = aB̄Ā + aB̂Ā + aB̄Â + aB̂Â (4.2)

this decomposition can be very useful for natural body dynamics, but is typically
not used for spacecraft dynamics. The terms on the right-hand side of this
equation are shown graphically in Fig. 4.1, and represent the accelerations:

• aB̄Ā: Exerted by a point mass B on a point mass A (see Section 4.1.1).

• aB̂Ā: Exerted by extended body1 B on a point mass A (see Section 4.1.2).

• aB̄Â: Exerted by point mass B on an extended body A (see Section 4.1.3).
This contribution can be neglected if µ

A
/µ

B
→ 0, such as for spacecraft

dynamics.

• aB̂Â: Exerted by extended body B on an extended body. This contribution
can be neglected if µ

A
/µ

B
→ 0, such as for spacecraft dynamics. For most

1Note that in this context the term ’extended body’ refers to the gravity field without the
point mass contribution.

19
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B
A

B
A

B
A

B
A

Figure 4.1: Graphical representation of the terms in Eq. (4.2), indicating point
mass and extended body attractions. Note that, with the exception of aB̄Ā, the
directions of the accelerations depend on the specific extended gravity fields of
the bodies.

cases, it can also be neglected for µ
A
/µ

B
not approaching zero, and we

therefore do not treat it further here.

All acceleration components in Eq. (4.2) are expressed w.r.t. an inertial origin.
We discuss the influence of a non-inertial frame origin on the formulation of
the gravitational accelerations, leading to the formulation of the third-body
acceleration, in Section 4.1.4.

4.1.1 Point-mass gravity

For a point-mass, the potential is expressed simply by Eq. (2.6), which results
from Eq. (4.1) in the well-known inverse-square law for the acceleration on a
point mass, exerted by a point mass:

aB̄Ā = − µ
B

||r
BA

||2
r̂
BA

(4.3)

4.1.2 Spherical-harmonic gravity (body exerting acceler-
ation)

We use Eq. (4.1) to compute the gravitational acceleration, using the spherical
harmonic potential in Eq. (2.12). Since the terms UB,lm are a function of the
body-fixed position of body A, see Eqs. (2.14)-(2.16), the potential gradient is
more easily calculated in a frame fixed to body B (denoted ∇(B) = ∂/∂r(B)),
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and we have for the acceleration in a frame with inertial orientation:

a
BA

= ∇

( ∞∑
l=0

l∑
m=0

UB,lm(r
BA

)

)
(4.4)

= R(I/B)∇(B)

( ∞∑
l=0

l∑
m=0

UB,lm(r
BA

)

)
(4.5)

= R(I/B)

(
lmax∑
l=0

l∑
m=0

(
∇(B)UB,lm(r

BA
)
))

(4.6)

The complete formulation for ∇(B)UB,lm can be found in e.g. Montenbruck and
Gill (2000), and shall not be written out here.

For completeness, we note that Eq. (4.6) includes both the point mass (l = 0)
and extended body contributions of body B. In the notation of Eq. (4.2), we
have:

aB̂Ā = R(I/B)

(
lmax∑
l=1

l∑
m=0

∇(B)UB,lm(r
BA

)

)
(4.7)

4.1.3 Spherical-harmonic gravity (body undergoing accel-
eration)

The previous section described the typical case where the body B, which is
exerting the acceleration, possesses a spherical harmonic gravity field. In cases
where the body A that is undergoing the acceleration is itself endowed with a
spherical harmonic gravity field, this will directly influence body A’s own dy-
namics. This effect is described in this section. For the dynamics of spacecraft,
which are typically assumed to be massless, this term can be neglected.

The acceleration under consideration can be understood as a direct result
of Newton’s third law. Consider a body A with a spherical harmonic gravity
field, exerting an acceleration on a point mass B (swapping the roles of A and
B compared to previous sections). Eq. (4.7) then provides a formulation for
aÂ,B̄ . By Newton’s third law, we have:

aB̄Â = −µ
B

µ
A

aÂB̄ (4.8)

= −µ
B

µ
A

∇UÂ(rAB) (4.9)

which is exactly the effect which we require in this section.

The total gravitational acceleration between two extended bodies in Eq.
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B

A

B

A

Figure 4.2: Graphical representation of reaction force between two point masses
A and B, and a point mass A and extended body B.

(4.2), omitting the contribution of aB̂Â, is then written as:

a
BA

= − µ
B

||r
BA

||2
r̂
BA

+∇UB̂(rBA
)− µ

B

µ
A

∇UÂ(rAB
) (4.10)

= − µ
B

||r
BA

||2
r̂
BA︸ ︷︷ ︸

aB̄Ā

+R(I/B)∇(B)UB̂(rBA
)︸ ︷︷ ︸

aB̂Ā

− µ
B

µ
A

R(I/A)∇(A)UÂ(rAB
)︸ ︷︷ ︸

aB̄Â

(4.11)

Consequently, the total cceleration on body A depends on the orientation and
gravity field of body A itself through R(I/A) and UÂ.

4.1.4 Non-inertial origins

The models in Sections 4.1.1-4.1.3 hold for propagation w.r.t. an inertial origin
(e.g. the barycenter). In typical situations, propagations are not done w.r.t. the
barycenter, but rather w.r.t. some central body. For instance an Earth-orbiting
spacecraft is propagated w.r.t. the center of mass of the Earth, not w.r.t. the
barycenter.

Here, we distinguish two different cases:

i The computation of (a
BA

)B : acceleration due to body B, acting on body
A, with the frame origin at body B’s center of mass: the acceleration due
to the central body itself.

ii The computation of (a
BA

)C : acceleration due to body B, acting on body
A, with the frame origin at some other body C: the so-called third-body
perturbation

For the first case, we have:

(a
BA

)B = a
BA

− a
AB

(4.12)

This second term on the r.h.s. of expression takes into account the fact that
the body A may also exert a gravitational acceleration on body B. This term
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B: (Moon

C: (Earth)

A: (Spacecraft)

Figure 4.3: Graphical representation of third body perturbation (a
BA

)C , for
point masses A, B and C

is negligible for the cases where µ
A
/µ

B
→ 0, for instance when body A is a

spacecraft and body B is the Earth. In this case, we have:

(a
BA

)B → a
BA

(4.13)

However, it is important to take the second term of Eq. (4.12) into account
for natural body dynamics, for instance when computing the Moon’s dynamics
w.r.t. the Earth. For example, for the case of bodies A and B both having a
point-mass gravity field, we get the following by using Eqs. (4.3) and (4.12):

(a
BA

)B = −µ
A
+ µ

B

||r
BA

||2
r̂
BA

(4.14)

This expression also shows that, when computing Kepler elements of one massive
body w.r.t. another massive body, the sum of their gravitational parameters
should be used, not only the gravitational parameter of the central body.

For case (ii), the third-body perturbation, we have:

(a
BA

)C = a
BA

− a
BC

(4.15)

which, for interacting point-masses, reduces to the following by applying Eq.
(4.3):

(a
BA

)C = µ
B

(
− r̂

BA

||r
BA

||2
+

r̂
BC

||r
BC

||2

)
(4.16)

A graphical representation of the third body perturbation on a spacecraft (body
A) exerted by the Moon (body B), with propagation origin at the Earth (body
C) is given in Fig. 4.3

Although less familiar in typical applications, Eqs. (4.12) and (4.15) apply
equally to point mass and extended-body accelerations. For example, it can be
used directly to compute a ’third-body spherical-harmonic’ acceleration. Such
an acceleration may be relevant for spacecraft dynamics. Consider, for instance,
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the influence of the Moon’s spherical harmonic gravity field on a high-altitude
Earth orbiter. For such a situation, we would have:

(a
BA

)C = ∇UB(rBA
)−∇UB(rBC

) (4.17)

(a
BA

)C = ∇

(
lmax∑
l=0

l∑
m=0

UB,lm(r
BA

)

)
−∇

(
lmax∑
l=0

l∑
m=0

UB,lm(r
BC

)

)
(4.18)

wiht A, B and C representing the spacecraft, the Moon and the Earth, respec-
tively.2

A worked out case for the influence of the models discussed in this section
on the dynamics of a system of massive bodies is given in Eq. (4.21) for the
dynamics of the Galilean moons, for which the mutual spherical harmonic ac-
celerations between the moons, and between Jupiter and the moons, become
relevant.

4.1.5 Example - Dynamics of Planetary Satellite System

As a synthesis of the above sections, and to provide a more concrete examples
of how all equations are combined in practice, we provide here the explicit for-
mulation of the dynamics of a planetary satellite system (e.g. Galilean moons)
w.r.t. a central body (e.g. Jupiter). We consider the dynamics of N extended
bodies, denoted with i = 1...N , w.r.t. a central body, which is denoted by index
0.

The total acceleration is then written as:

(ai)0 = (a0,i)0 +

N(i ̸=j)∑
j=1

(aj,i)0 (4.19)

First, we compute (a0,i)0 from Eq. (4.12), using Eq. (4.10) for both a0,i and
ai,0, to get:

(a0,i)0 =

central body - satellite︷ ︸︸ ︷
− (µ0 + µi)

(
r̂0i

||r0i||2
− ∇U0̂(r0i)

µ0
+

∇Uı̂(ri0)

µi

)
(4.20)

For the third-body effects (aj,i)0, we use Eq. (4.15), again using Eq. (4.10) for
the constituents aj,i and ah,0:

(aj,i)0 = −µj


(

r̂ji
||rji||2

− ∇Uȷ̂(rji)

µj
+

∇Uı̂(rij)

µi

)
︸ ︷︷ ︸

third body - satellite

−
(

r̂j0
||rj0||2

− ∇Uȷ̂(rj0)

µj
+

∇U0̂(r0j)

µ0

)
︸ ︷︷ ︸

third body - central body


(4.21)

2In this model, we have neglected the contribution of aB̄,Ĉ , involving the possible extended

body potential UĈ of the central body C.
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Note that this expression is independent of the specific formulation of the ex-
tended gravity fields of any of the bodies, or any specific rotation models of
these bodies. The physical limitation of this expression is the omission of the
terms aı̂,ȷ̂.

4.2 Aerodynamic acceleration

The aerodynamic acceleration can be computed from one of the following for-
mulations:

a
BA

= − 1

m
R(I/B) ·R(B/Aero)

1

2
ρv2airSref

CD

CS

CL

 (4.22)

a
BA

=
1

m
R(I/B) ·R(B/A)

1

2
ρv2airSref

Cx

Cy

Cz

 (4.23)

depending on the aerodynamic force coefficient set that is used (see Section 3.1).
A special case for the formulation of the aerodynamic acceleration is the

cannon-ball model. In this model, we assume the aerodynamic force to consist
of only drag (CL = CS = 0), in which case we can dispense with the various
frame transformations, and simply evaluate:

a
BA

= −
(
ρv2airCDSref

2m

)
v̂air (4.24)

The great advantage of this formulation is that it forgoes the need to determine
any of the rotation matrices required for Eqs. (4.22) and (4.23).

4.2.1 Aerodynamic Guidance

Without changing the orientation of the vehicle w.r.t. the oncoming flow, the
bank angle σ may be modified to influence the rotation R(B/Aero), so that:

R(B/Aero) = R(B/V )(δ, τ)R(V/T )(γ, χ)R(T/Aero)(σ) (4.25)

where the frames B, V , T and Aero represent teh body-fixed frame of body B,
and the vertical, trajectory and aerodynamic frames of body A w.r.t. body B,
respectively. These frames, and their frame transformations, are discussed in
more detail by Mooij (1994).

In addition, the orientation of the vehicle w.r.t. the oncoming flow, pa-
rameterized by the angle of attack α and the sideslip angle β, can be used to
modulate the aerodynamic coefficients, since generally:

Ck = Ck(α, β, ...) (4.26)

where k = D,S, L. Here, we stress that this dependency will in general exist, but
is not taken into account by Tudat unless such a dependency is explicitly defined
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(e.g. coefficients are defined as function of α and/or β). The ... in the above
equation is given to indicate the dependency on numerous other quantities,
which may or may not be directly influenced by the vehicle’s state.

4.3 Radiation pressure acceleration

4.3.1 Cannon-ball radiation pressure acceleration

Under the assumptions of the cannon-ball model (radiation from source at infi-
nite distance illuminating a perfectly spherically symmetric object), we have:

a
BA

= p
B
(r

A
)

(
CrS

m

)
r̂
BA

(4.27)

where p
B
(r

A
) is the radiation pressure due to body B (in units of force per area)

at the location of body A. For typical applications, body B will be the Sun.

The radiation pressure can be computed from:

p =

(
P

c

)
1

4π||r
BA

||2
(4.28)

a
BA

=

(
P

4πc

)(
CrSref

m

)
r̂
BA

||r
BA

||2
(4.29)

where P is the total power emitted by the Sun (in units energy per time),
and c is the speed of light. Comparing this expression with Eq. (4.3), we can
see that the formulation is identical to that of a point mass gravity, under the

transformation µ
B
→ −

(
P
4πc

) (CrSref

m

)
4.3.2 Panelled radiation pressure acceleration

This radiation pressure model is much more detailed than the simplified cannon-
ball model. It uses a so-called ’macro-model’, in which the exterior of the vehicle
is divided into a number of panels. The radiation pressure force on each of these
panels i is then computed from:

(f
BA

)i =

{
p

B
(r

A
) cos θiAi

(
(1− ϵi)r̂AB

+ 2
(
ϵi cos θi +

ρi

3

)
n̂i

)
cos θi > 0

0 cos θi ≤ 0

(4.30)

where ϵi, ρi and Ai are the emissivity, diffuse reflectivity and area of panel i,
respectively, and θi is the angle between the vector r̂

AB
(from the body A to

the source of the radiation B) and the panel outward surface normal vector n̂i:

n̂i · r̂AB
= cos θi (4.31)
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The total radiation pressure acceleration is then computed from:

a
BA

=
∑
i

(f
BA

)i (4.32)

Although much more accurate than the cannon-ball model in Section 4.3.1, this
panelled model still makes a number of simplifying assumptions:

• Radiation is either absorbed, specularly reflected, or diffusely reflected in
a Lambertian pattern

• All absorbed radiation is instantaneously re-radiated in a Lambertian pat-
tern

• There is no ’shadowing’ of one panel by another panel

• Each photon interacts with the body only once (no multi-path effects)

4.4 Thrust acceleration

Tudat uses a single unified thrust model, which is applied in an identical way for
high-thrust (launchers, spacecraft, ... ), as well as low-thrust propulsion systems.
Also, a model is provided which allows an ’impulsive’ thrust to be incorporated
into the model by spreading the impulse out over a short time interval (termed
pseudo-impulsive thrust), allowing its direct inclusion into state propagation.

In a general formulation, thrust is defined by two separate aspects, the mag-
nitude T of the thrust force, and the thrust direction vector f̂T . The thrust
acceleration is then computed from:

a
AA

=
T · f̂T
m

A

(4.33)

where we have a double subscript A (body exerting/undergoing thrust), as (the
body exerts a force ’on itself’.

Numerous options are available in Tudat to compute and set the thrust
magnitude and direction. Among these are options for user-defined custom
functions that compute these quantities, as a function of time, or other variables
(e.g. altitude, Mach number, etc.).

4.5 Relativistic acceleration

The gravitational accelerations described in Section (4.1) are all based on a
Newtonian model of gravity. A physically complete description of gravitational
acceleration should be formulated in terms of general relativity, however. Since
solar-system scale astrdynamics problems take place in the so-called ’weak-field
slow-motion’ regime, Newtonian gravity is a very good approximation for its
relativistic counterpart. Therefore, relativistic effects are typically included as
correction accelerations to the Newtonian acceleration models.
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4.5.1 Schwarzschild acceleration

The Schwarzschild acceleration provides the relativistic correction to Eq. (4.3),
the gravitational acceleration due to a point mass. The correction acceleration
a

BA
on a body A due to a point mass B is given by:

a
BA

=
µ

B

c2r3

((
2(β + γ)

µ
B

r
− γ(v · v)

)
r+ 2(1 + γ)(r · v)v

)
(4.34)

where we have omitted the BA subscripts on r, r and v for the sake of clarity.
The parameters γ and β are so-called Patametric Post-Newtonian (PPN) pa-
rameters, which represent possible deviations from general relativity. In general
relativity, they both have a value of 1.

4.5.2 Lense-Thirring acceleration

The Lense-Thirring effect knows no counterpart in Newtonian gravity. It is a
result of the fact that not only mass, but the motion of mass, causes space-time
curvature, and an associated acceleration. The Lense-Thirring effect is a result
of the space-time curvature, induced by a central body’s angular momentum h.
This angular momentum of a body B (for instance of the Earth) induces the
following acceleration on a body A:

a
BA

= (1 + γ)
µ

B

c2r3

(
3

r2
(r× v) (r · h) + (v × h

B
)

)
(4.35)

where we have again omitted the BA subscripts on r, r and v for the sake of
clarity.

4.5.3 De Sitter acceleration

The de Sitter acceleration is a correction to the third-body point-mass acceler-
ation (a

BA
)C , given by Eq. (4.16). It is relevant, for instance, when computing

high-accuracy dynamics of a spacecraft A about the Earth (C), in which case
the de Sitter effect due to the Sun (B) may need to be taken into account. It
can be formulated as:

(a
BA

)C = −(1 + 2γ)

(
r
BC

×
(
µ

B
r
BC

c2r3BC

))
× v

CA
(4.36)

4.6 Empirical acceleration

The empirical acceleration is a model that is often applied in spacecraft state
estimation, and is used to ’absorb’ mismodelling in the spacecraft’s dynamical
model. Any arbitrary parameterized formulation could be used for this accel-
eration, but we limit ourselves to the ’typical’ implementation of the empirical
acceleration.

a
BA

= R(I/BRSW) (a1 sin θ + a2 cos θ + a3) (4.37)
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which defines three vectors a1, a2, a3, defining an acceleration in the RSW
frame that is modulate by the sin of the true anomaly, the cosine of the true
anomaly, and one constant acceleration.
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Chapter 5

Torque Models

NOTE: This chapter is still very incomplete

5.1 Extended-body Gravitational Torque

For the general case where body A has an arbitrary mass distribution, we can
write the gravitational torque exerted by a point mass B on A from:

m(A)
BA

= −mAr
(A)
BA

×
(
∇(A)UA(rAB

)
)

(5.1)

where the potential of body A may be expanded to arbitrary degree and order.
In the above formulation, the contribution of the degree zero terms in UA (the
point mass contributions to the torque) naturally cancel out.

5.2 Degree-two Gravitational Torque

For the case where we only consider the degree-two gravity field of body A, we
can rewrite the gravitational torque as:

m(A)
BA

=
3µ

B

||r
BA

||5
r(A)
BA

×
(
IAr

(A)
BA

)
(5.2)

which is written in terms of the inertia tensor. In this expression, we note that
the contribution of ĪB to the torque is always zero, and the result is identical to
the torque given by Eq. (5.1), with UB truncated at degree two (and degree-one
terms equal to zero).
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Chapter 6

Propagation Models

NOTE: This chapter is still very incomplete

In this chapter, we will discuss the state derivative models for different types
of states. We use the general notation y for an arbitrary state vector, which
may be any combination of any type of state for any number of bodies. In the
following sections, we discuss the specific types of state y and their propagation.

6.1 Translational Dynamics

Here, we treat the different formulations for the state derivative of the transla-
tional dynamics of a single body A, w.r.t. a body B. We denote the Cartesian
formulation of the propagated state as xBA, while denoting the specific formu-
lations (e.g. Cowell, Encke, etc.) for the dynamics as x̃

BA
. Considering the

propagation of a single body, we have:

y = x̃
BA

(6.1)

for our generic state vector y.

6.1.1 Cowell

The Cowell propagator is the most straightforward case, for which:

x̃
BA

=

(
r
BA

v
BA

)
(6.2)

= x
BA

(6.3)

This leads to the simple formulation for the state derivative:

˙̃x
BA

=

(
v

BA

(a
A
)B

)
(6.4)
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6.1.2 Encke

In the Encke formulation, we use a reference Keplerian orbit w.r.t. the prop-
agation origin B, and we propagate the deviations from this reference orbit.
Typically, this reference orbit is defined from the initial conditions.

We denote the Cartesian position of the reference orbit as ρ
BA

(t;µ
B
), where

µ
B
is the gravitational parameter of the central body w.r.t. which the reference

Kepler orbit is defined. Crucially, this means that the origin B must be endowed
with a gravitational paramater (which e.g. the SSB is not).

In the rest of this section, we will omit the BA subscripts for position, velocity
and acceleration vectors, for the sake of readability and brevity, so that r

BA
→ r,

v
BA

→ v, ρ
BA

→ ρ. For the total accelerations, we use (a
A
)B → a, and we

finally we use µ → µ
B
.

The propagated Encke state is then defined by:

x̃ =

(
r
v

)
−
(
ρ(t;µ)
ρ̇(t;µ)

)
(6.5)

=

(
∆r
∆v

)
(6.6)

so that, in this section, ∆r and ∆v denote the deviation of the true orbit from
the Keplerian reference orbit ρ.

The Encke state derivative requires the perturbing accelerations acting on
body A, which is defined from:

(a)pert. = a− (a)cent. (6.7)

where (a)cent. denotes only the point-mass acceleration of body B acting on
body A (with B as the propagation origin), and (a)pert. denotes the remainder
of the total acceleration. This central acceleration is computed directly from
Eq. (4.14), which reduces to Eq. (4.3) for the case where we assume body A to
be massless.

The dynamics of ρ and r obey:

ρ̈ = −µ
ρ̂

||ρ||2
(6.8)

r̈ = −µ̄
r̂

||r||2
+ (a)pert. (6.9)

where µ̄ = µ
A
+ µ

B
. The ’Encke acceleration’ ã is then computed from:

q =
1

2

(
||r||2

||ρ||2
− 1

)
(6.10)

F(q) =
2q

1 + 2q

(
1 +

1

1 + 2q +
√
1 + 2q

)
(6.11)

ã =
µ

ρ3
(rF(q)−∆r) + (a)pert (6.12)
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which leads to the following state derivative (now reintroducing all sub/superscripts):

˙̃x
BA

=

(
ρ̇

BA

(ã
A
)B

)
(6.13)

6.2 Rotational Dynamics

The rotational state of a single body is defined by the full state vector:

y =

(
b

B

ω
B

)
(6.14)

where b
B

is a representation of the body’s orientation w.r.t. inertial space,
and ω

B
is the body’s angular velocity vector w.r.t. inertial space, expressed

in B’s body-fixed frame, as per Eq. (1.14) We note that there exist other
representations, that do not explicitly use the angular velocity vector, but we
will not cover those here.

6.2.1 Angular Velocity Vector

Our representations for the rotational state all incorporate the angular velocity
vector ω

B
into the state vector, requiring a formulation for ω̇

B
. We define the

angular momentum vector h
B
as:

h
B
= IBωB

(6.15)

where we have implicitly used h
B
for the angular momentum vector in the frame

B (fully: h(B)
B

). By Euler’s equations, we have :

dh
B

dt
+ ω

B
× h

B
= m

B
(6.16)

where m
B
denotes the total torque acting on body B, expressed in frame B (as

a simplified notation for m(B)
B

). Note that for bodies with a variable mass, in
which is flowing into or out of the body, this will affect the total torque b acting
on the body.

The above leads to the following differential equation governing the evolution
of ω

B
:

ω̇
B
= (IB)

−1
(
m

B
− ω

B
× (IBωB

)− İBωB

)
(6.17)

In many cases, we have an (almost) constant internal mass distribution of
our body. In such cases, we can neglect İB , leading to:

ω̇
B
= (IB)

−1
(m

B
− ω

B
× (IBωB

)) (6.18)

For cases where İB is very small, but non-zero, the above may still be a valid
approximation, but it can often still be important to update IB for every eval-
uation of Eq. (6.18).
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6.3 Mass Dynamics

The dynamics of the mass is computed in a straightforward manner, for which
we only use a single formulation. For the mass state of body B, we have:

y = m
B

(6.19)

The state derivative simply becomes:

ẏ = ṁ
B

(6.20)

where the total mass rate ṁB of the body may be composed of multiple contri-
butions i:

ṁ
B
=
∑
i

ṁ
B,i

(6.21)

In the case where we are computing mass flow of a (rocket) motor that is exerting
a thrust force fT , we have:

ṁ
B,i

=
∑
i

|fT |
Ispg0

(6.22)

with Isp and g0 the specific impulse of the motor, and a reference acceleration
(=9.80665 m/s2), which are related to the propellant expulsion speed u (w.r.t.
the body B) as:

u = Ispg0 (6.23)



Chapter 7

Variational Equations

We now consider the general case where we have a differential equation governing
the dynamics of a state vector y as a function of time t of the form:

ẏ = f(y, t;p) (7.1)

y(t0) = y0 (7.2)

where the vector p is a vector of parameters that influence the dynamics, and
t0 is the initial time (with y0 the associated initial condition).

For various applications, it is useful to find a formulation for the influence of
a change in y0 and/or p on the resulting state history y(t). A typical approach
to this is to make a linear approximation, so that we can write:

∆y(t) ≈ ∂y(t)

∂y0
∆y0 +

∂y(t)

∂p
∆p (7.3)

where ∆y0 and ∆p represent the change in initial state and parameter vector,
and ∆y represents the resulting change in state history. The partial derivatives
are typically abbreviated as:

Φ(t, t0) =
∂y(t)

∂y0
(7.4)

S(t) =
∂y(t)

∂p
(7.5)

with Φ and S termed the state transition and sensitivity matrices. Before
discussing further details of these matrices, we note that a generalization of
Eq (7.3), with second- and higher-order derivatives (termed state transition

tensors) such as ∂2y(t)
∂y2

0
, can be set up. However, this is beyond the scope of this

document.

The state transition and sensitivity matrices can be obtained by numeri-
cal integration of their governing differential equations, which are termed the
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variational equations. They are defined by:

dΦ(t, t0)

dt
=

∂ẏ

∂y

∂y

∂y0
(7.6)

=

(
∂f

∂y

)
Φ(t, t0) (7.7)

dS(t)

dt
=

∂ẏ

∂y

∂y

∂p
+

∂ẏ

∂p
(7.8)

=

(
∂f

∂y

)
S(t) +

∂f

∂p
(7.9)

(7.10)

where y, ẏ and f are all evaluated at time t. These equations are typically,
but not necessarilly, numerically integrated concurrently with the state y, with
initial conditions:

dΦ(t0, t0)

dt
= 1ns×ns (7.11)

S(t0) = 0ns×np
(7.12)

(7.13)

where ns and np denote the size of the state vector y and the parameter vector
p, respectively. The state transition matrix has a number of useful properties:

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (7.14)

(Φ(t1, t0))
−1

= Φ(t0, t1) (7.15)

7.1 Translational dynamics

Many typical applications of the variational equations involve the situation
where the vector y represents the translational state of one or more bodies.
For instance, for the case of a single body’s translational dynamics, we have:

y =

(
r
v

)
(7.16)

f =

(
v
a

)
(7.17)

and, therefore, we get the partial derivatives in the variational equations as:

∂f

∂x
=

(
03×3 13×3
∂a
∂r

∂a
∂v

)
(7.18)

∂f

∂p
=

(
03×np

∂a
∂p

)
(7.19)
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where we have omitted the sub- and supercripts indicating frames, and the time
argument t, for the sake of clarity. The partial derivatives of the accelerations a
can in most cases be evaluated analytically. Their formulation is given by e.g.,
(Moyer, 1971; Montenbruck and Gill, 2000; ?; Dirkx et al., 2019) for numerous
accelerations and parameters.

The same tools can also be used when y represents the state of any number
of bodies. For the case of translational dynamics of N bodies, we have:

y =


x1

x2

...
xN

 (7.20)

The resulting state transition matrix will then be built up as:

Φ(t, t0) =


Φ1,1(t, t0) Φ1,2(t, t0) . . . Φ1,N (t, t0)
Φ2,1(t, t0) Φ2,2(t, t0) . . . Φ2,N (t, t0)

...
...

. . .
...

ΦN,1(t, t0) ΦN,2(t, t0) . . . ΦN,N (t, t0)

 (7.21)

with

Φi,j(t, t0) =
∂xi(t)

∂xj(t0)
(7.22)

For the case where i = j, the associated partial derivatives of the fi are as in
Eqs. (7.18) and (7.19), with r, v, a and f denoting properties of body i. For
i ̸= j, we have:

∂fi
∂xj

=

(
03×3 03×3
∂ai

∂rj
∂ai

∂vj

)
(7.23)

7.2 Application to differential correction

An important application of the state transition and sensitivity matrices is in
computing differential corrections to a trajectory. That is, we have a solution
y(t) to some dynamical model, with initial state y(t0). Now, assume we have
a boundary condition ȳ(t1) that we wish to meet at some time t1. In the case
where the entries of the mismatch ȳ(t1) − y(t1) are ’small’, we can efficiently
use the state transition matrix to compute the changes to the initial state y(t0)
that will result in meeting the required final state. That is, we want to find the
correction to the initial state ∆y(t0), such that:

y(t1) = ȳ(t1) (7.24)

Defining the state correction ∆y(t1) that we need to achieve at t1 as:

∆y(t1) = ȳ(t1)− y(t1) (7.25)
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We have:

∆y(t0) = Φ(t0, t1)∆y(t1) (7.26)

Now, consider the more specific case of a spacecraft orbit, for which we have
a numerical solution x(t) = [r(t),v(t)]T , and we wish to compute a transfer
trajectory from r̄(t0) to r̄(t1): we have boundary conditions on the position
at both the initial and final time. We leave the velocities at both boundaries
free, as any mismatch w.r.t. some desired solution may be corrected by (small)
maneuvers.

To find the required solution that meets both boundary conditions, we can
start by setting the initial position equal to r̄(t0), and propagating the dynamics
until t1, which will give us a final position r(t1). To compute the required change
in state at t0 and t1, which we denote ∆x(t0) and ∆x(t1), respectively, we have
the following two conditions:

∆r(t0) = 0 (7.27)

∆r(t1) = r̄(t1)− r(t1) (7.28)

By generating a solution for Φ(t, t0), and using Eq. (7.26), these conditions
result in a uniquely defined (assuming Φ(t1, t0) to be invertible) impulsive ma-
neuver ∆v(t0) that will satisfy Eqs. (7.27) and (7.28).

(
∆r(t0)
∆v(t0)

)
= Φ(t0, t1)

(
∆r(t1)
∆v(t1)

)
(7.29)

Since our initial position r(t0) is assumed to meet our boundary condition, we set
∆r(t0) = 0. Now, to compute ∆v(t0), we have an infinite number of remaining
solutions, as we are free to choose our value of ∆v(t1). Typical solutions include
simply setting ∆v(t1) = 0 or generating some condition v̄(t1) that the state is
to meet at the final time.



Chapter 8

Numerical Integrators

Numerical integrators are tools to obtain an approximate solution to an ordinary
differential equation (ODE) of the form:

dy

ds
= f (y, s) (8.1)

subject to the initial condition:

y(s0) = y0 (8.2)

where s represents the independent variable (typically, but not necessarilly,
time), and y represents the state that is to be propagated. We will limit our-
selves to first-order ODEs.

In the remainder of this section, we will use a slight abuse of notation,
and denote the independent variable s by t (and consequently dy/ds → ẏ).
Moreover, in this section we will write all formulations for the case that the
state y is a vector (unless indicated otherwise). However, all equations work
equally well for the case where the state is a scalar y or a matrix Y.

The output of the numerical integrators is an approximation ȳ to the true
state y, at a discrete set of epochs ti

ȳ(ti) ≈ y(ti), i = 0...N (8.3)

where we will occasionally use the notation:

ȳi = ȳ(ti) (8.4)

The different integrators differ in their approach in generating these approxi-
mations. Here, we treat three classes of integrators, multi-stage (Section 8.2),
multi-step (Section 8.3) and extrapolation methods (Section 8.4). Before dis-
cussing specifics of integration methods, we discuss error properties of the nu-
merical solution ȳi in Section 8.1
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8.1 Integration Errors

The error of the numerical solution produced by the integrator at time i can be
written as:

ϵ(ti) = ȳ(ti)− y(ti) (8.5)

Where, even though we do not know what the true solution y(ti) is in typi-
cal cases 1, we can postulate its existence, and from there derive useful error
properties that will aid the comparison and analysis of different integrators.

There are two distinct aspects of integration error, which combine to form
the full integration error. These two aspects are:

• Truncation error

• Numerical (or rounding) error

Here, we ignore any model error that exists, we are here interested in the math-
ematical error properties of the ODE defined by Eqs. (8.1) and (8.2), and do
not consider the fact that these equations may not be physically exact. Issues
related to model errors are discussed in Section ??.

The truncation error represents the inherent mathematical limitation of the
particular integration method. To obtain an approximate solution to Eq. (8.1),
the integrator must discard part of the behaviour of the true solution. The
error that is incurred as a result of this process is termed the truncation error.
For example, in the case of the Euler integrator, we rely on the underlying as-
sumption that the state derivative ẏ remains constant over the interval [ti, ti+1).
Truncation error is discussed in more detail in Section 8.1.1, and is a property
of the specific integration method that is used, and its settings.

Numerical error is a source of the computational implementation of an in-
tegrator, as a direct result of the fact that computers use a limited number of
digits (e.g 16 digits for a double precision variable). Consequently, there is an
inherent randomness in the ’final digit’ (colloquially speaking) when performing
a numerical computation. Numerical error is discussed in more detail in Sec-
tion ??. Numerical error is not a property of a specific integration method, but
is instead incurred because we implement the method on a digital computing
system.

8.1.1 Truncation Error

To better understand the truncation error that is incurred during a single step
of a numerical integrator, we expand the true solution as follows:

y(t+∆t) = y(t) +

∫ t+∆t

t

f(y, t̃)dt̃ (8.6)

1If we did, there would be no point in doing the integration
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into a power series as follows:

y(t+∆t) =

∞∑
i=0

(∆t)i

i!

di

dti
(y(t)) (8.7)

Now, to analyze the emergence of the truncation error, consider the situation
where we know the true solution at some epoch t, so that ȳ(t) = y(t). In this
manner we can analyze the error that accumulates when making the time step
t → t+∆t.

To illustrate the truncation error, we will start with an example, before
moving to the more general situation. Consider the basic Euler integrator, for
which we have:

ȳ(t+∆t) = y(t) + ∆tf(y, t) (8.8)

=

1∑
i=0

(∆t)i

i!

di

dti
y(t) (8.9)

since f is just the first time-derivative of y. We then have, by combining Eqs.
(8.5), (8.7) and (8.8)

ϵ(t+∆t) = −
∞∑
i=2

(∆t)i

i!

di

dti
y(t) (8.10)

= O(∆t2) (8.11)

where notation O(∆t2) indicates that, for a given integration step, the error
will increase approximately proportional to ∆t2. Using a similar approach, it
can be shown that the error incurred during a single step of the Runge-Kutta 4
method is O(∆t5).

We now make a small ’leap of faith’, and assume that the numerical approx-
imation of any integration method can be written as:

ȳ(t+∆t) =

q∑
i=0

(∆t)i

i!

di

dti
(y(t)) (8.12)

ȳ(t+∆t) =

p−1∑
i=0

(∆t)i

i!

di

dti
(y(t)) (8.13)

ϵ̄(t+∆t) =

∞∑
i=p

(∆t)i

i!

di

dti
(y(t)) (8.14)

ϵ̄(t+∆t) =

∞∑
i=p

Ki(∆t)i (8.15)

≈ Kp(∆t)p (8.16)
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That is, we assume that a given integrator correctly reproduces the first q + 1
terms in the Taylor series expansion Eq. (8.7) of the true solution, but omits
the others.

In this general case, the error incurred during a single step is O(∆tq). This
error incurred during a single step is termed the local truncation error (LTE).
The error incurred over the full integration time is termed the global trunction
error (GTE). For N time steps, the GTE is obtained by combining N LTEs of
O(∆t2). If N increases (more steps), the time step ∆t will get smaller, so that:

GTE ∼ N · LTE (8.17)

N ∼ 1

∆t
(8.18)

GTE ∼ LTE/∆t (8.19)

As a result, the GTE of the Euler integrator is O(∆t), making the Euler integra-
tor a so-called first-order integrator (similarly, the RK4 method is a fourth-order
method).

This O(∆tp) notation for errors is termed the ’big O’ notation. Stating that
an error is of O(∆tp) implies:

ϵ(ti) =

∞∑
j=p

Kj(ti)∆tj (8.20)

This formulation for the truncation error is used in various aspects of numerical
integration (error analysis, step-size control, etc.), and it is therefore important
to discuss the meaning of this formulation in a bit more detail.

The first crucial point to realize is that, although we know the value of ∆t,
the values of Kj are not known, we merely know that values Kj exist such that
Eq. (8.20) will hold. Moreover, we know that if we change only ∆t, the values
of Kj will not change. If we change the integration method, state derivative
function, or the time t at which our step starts, however, the coefficients Kj

will take on different values.
A typical, though not necesarilly correct, interpretation of anO(∆tp) method,

is that:

ϵ(ti) ≈ Kp(ti)∆tp (8.21)

which implicitly assumes thatKp∆tp is larger than all remaining terms (starting
at p+ 1) in Eq. (8.20) combined. By making this assumption, the order p of a
method is used to analyze how strongly the error decreases due to a decrease in
the step size ∆t. Typically, it is assumed that (using a scalar notation for the
state and error):

ϵ(ti; ∆t/2)

ϵ(ti; ∆t)
≈ Kp

(
1

2

)p

(8.22)

For typical differential equations, this approximation will hold fairly well. It
breaks down, however, for so-called stiff differential equations. A very loose
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definition of a stiff differential equation is one where there are sudden large
(but not discontinuous) changes in the true solution, which can lead to the need
for a sudden radical decrease of step size to properly capture the behaviour of
the system. We will not discuss such equations in detail here. However, when
analyzing the behaviour of a numerical solution, such as when numerical results
seem ’curious’, the root cause may be that the equation becomes stiff.

8.1.2 Error Sources - Comparison

There is a strong distinction between these numerical and truncation errors,
both from a fundamental and a practical point of view. In the purely abstract
mathematical sense, numerical error does not exist. When writing down a nu-
merical integration scheme, we cannot derive any properties of the numerical
error. It is only when we implement it numerically, and have chosen a floating
point representation of our numbers, that the numerical error emerges. It is es-
sentially a practical problem, as we could in theory remove this error source by
selecting a floating point representation with n significant digits, and n → ∞.
The truncation error, on the other hand, is an inherent property of the mathe-
matical formulation of the numerical method. We can derive properties of the
truncation error, independent of any knowledge of the numerical implementa-
tion.

As was discussed in Sections 8.1.1 and ??, the behaviour of the two error
sources is also fundamentally different. Truncation error typically behaves in
a predictable manner when changing the time step/tolerance of an integrator,
while the rounding error will behave in an inherently random manner. Moreover,
rounding error will (on average) increase with increasing number of integration
steps, while truncation error will generally decrease if we take shorter integration
steps. As a result, there is an approximate optimal time step, at which the sum
of rounding and truncation error are at a minimum. When reducing the time
step below this value, we will incur a larger error at the cost of a higher error.
In typical situations, where ultimate accuracy is not required, truncation error
will be the dominant source of error.

8.2 Multi-stage Methods

The multi-stage method relies on multiple function evaluations of ẏ in the inter-
val [ti, ti+1]− to perform a single step from ti to ti+1. That is, multiple ’stages’
kj are computed to perform a single step as:

ȳi+1 = ȳi +

s∑
j=1

bjkj (8.23)
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where s is the number of stages used to make a single time-step. The stages kj

are computed from:

k1 = f(ȳi, ti + c1∆t) (8.24)

kj = f

((
ȳi +∆t

j−1∑
k=1

(ajkkk)

)
, ti + cj∆t

)
(8.25)

where the coeffients bj determine the contribution of each stage to the final
time step, coefficients ci determine the times at which each stage are evaluated,
and ajk determine the contribution of stage k to the value of ȳ used for the
computation of stage j.

8.2.1 Fixed-step Method - Runge-Kutta 4

In this section, we give the explicit equations for the Runge-Kutta 4 integrator,
a popular multi-stage integrator with s = 4.

8.2.2 Variable step-size methods

The use of multi-step methods permits a scheme to perform automatic step-size
control of the integrator. By performing step-size control, the integrator at-
tempts to achieve a give error level per time step (with this error level defined by
one or more free parameters in the methods). For astrodynamics applications,
this allows the time step to be automatically made smaller during periapsis (for
the case of a highly eccentric orbit), where the dynamics changes much faster,
and the error incurred during a single step of given length will generally be
larger than at apoapsis.

A variable step-size multi-stage method is set up, so that the s function
evaluations, see Eq. (8.23), are used to generate two distinct values of ȳi+1

ȳi+1 = ȳi +

s∑
j=1

bjkj (8.26)

ȳ∗
i+1 = ȳi +

s∑
j=1

b∗jkj (8.27)

Where the coefficients bj and b∗j belong to two different multi-stage integrators,
which use the function evaluations kj to generate two different approximations
of yi+1.

We note that some of the values kj may only be used by one of the two
methods (so that bj = 0 or b∗j = 0 for some values of j). The strength of
the method described above, however, lies in the fact that only a limited num-
ber of additional function evaluations needs to be performed to generated the
approximation ȳi+1 in addition to ȳ∗i+1 (or vice versa).
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For both integration methods, we assume that we know the error properties,
with the two methods having order p and p− 1, so that:

ϵi+1 = ȳi+1 − yi+1 = O(∆tp) (8.28)

ϵ∗i+1 = ȳ∗i+1 − yi+1 = O(∆tp−1) (8.29)

Now, for the case that truncation error is the dominant error source, we make
the assumption that the higher-order method has a much lower error than the
lower-order methods, so that:

ϵi+1 ≪ ϵ∗i+1 (8.30)

and we obtain an error estimate for the lower-order methods:

ϵ∗i+1 ≈ ȳ∗i+1 − ȳi+1 (8.31)

This estimate for ϵ∗i+1 allows us to modify the time step that is taken, in an
attempt to control the error incurred during a single step. Assume we want to
incur an error ϵ∗i+1,req, we can adjust the time step accordingly, since we know
the relation between ϵ∗i+1 and ∆t through Eq. (8.29). Consequently, we can
compute a modified time step as:

∆treq = ∆t

(
ϵ∗i+1,req

ϵ∗i+1

) 1
p−1

(8.32)

8.3 Multi-step Methods

Multi-step methods are fundamentally different from multi-state methods, in
that they do not rely on multiple function evaluations of ẏ to perform a single
step. Instead, they re-use previous steps ȳi−1, ȳi−2, ... to compute ȳi+1.

The explicit Adams-Bashforth (AB) method uses:

ȳi+1 = ȳi +∆t

s∑
j=0

bjf(ti−j , ȳi−j) (8.33)

where the times tn−j are assumed to be equispaced, so that:f

ti−j = ti − j∆t (8.34)

The coefficients bj define the weight of each past function evaluation, and are
specific for a given method of given s.

In addition, the implicit Adams-Moulton method uses:

ȳi+1 = ȳi +∆t

s∑
j=−1

cjf(ti−j , ȳi−j) (8.35)

= ȳi +∆t

c−1f(ti+1, ȳi+1) +

s∑
j=0

cjf(ti−j , ȳi−j)

 (8.36)
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The problem in using Eq. (8.35) is that is has ȳi+1, the quantity that is to
be the output of the integration step, on both sides of the equation. One way
of dealing with this issue is to use the predictor-corrector Adams-Bashforth-
Moulton (ABM) method. This method is based on feeding a predicted value
ȳ∗
i+1, produced by the AB method, into the right-hand side of the AM method,

so that:

ȳ∗
i+1 = ȳi +∆t

s∑
j=0

bjf(ti−j , ȳi−j) (8.37)

ȳi+1 = ȳi +∆t

c−1f(ti+1, ȳ
∗
i+1) +

s∑
j=0

cjf(ti−j , ȳi−j)

 (8.38)

which produces the required approximate state ȳi+1.

8.3.1 Step-size and order control

8.4 Extrapolation Methods



Chapter 9

Numerical Interpolators

An interpolator is a tool that is used to generate a continuous time series f(t)
from a discrete set of N data points f(ti) at times ti, with i = 0...N − 1. We
will assume in what follows that the list ti is sorted in ascending order, so
that ti < ti+1. Moreover, we will provide the governing equations for a vector
function f but, unless otherwise indicated, the methods arae equally applicable
to scalar and matrix functions.

An interpolator defines a method by which to compute a value of f at a
given time t. Typically, the first step in the algorithm is the computation of the
index j for which:

t ∈ [tj , tj+1) (9.1)

where we will denote the interval [tj , tj+1) as interval j. There are several
algorithms to determine the interval j, which we will not discuss further here.
In addition, we may have the situation where:

(t < t0) ∧ (t > tN−1) (9.2)

in which case we must extrapolate (not interpolate) from the available data
f(ti).

9.1 Piecewise constant interpolator

This basic interpolator sets, after determining the interval j of the input time t
as per Eq. (9.1), the interpolated value as:

f(t) = f(tj) (9.3)

As a result, the interpolated value of f is constant over each interval j, and
discontinuous on the boundary between two intervals.

49
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9.2 Linear interpolator

This interpolator uses a linear functon to interpolate using only the data at the
limits of interval j, as follows:

f(t) = f(tj) +
f(tj+1)− f(tj)

tj+1 − tj
(t− tj) (9.4)

As a result, although the interpolated value of f is continuous on the bound-
ary between two intervals, its first derivative is constant over an interval, and
discontunuous at the interval boundaries.

9.3 Lagrange interpolator

The Lagrange interpolator uses a degree-k polynomial to interpolate a data
set. Given k + 1 data points f(t0)...f(tk), it interpolates using the following
algorithm:

f(t) =

k∑
n=0

ln(t)f(tn) (9.5)

ln(t) =

k∏
m=0,m ̸=n

t− tm
tn − tm

(9.6)

with ln(t) the Lagrange polynomial basis functions.
This definition of an interpolator will only work if exactly k+ 1 data points

are given as input, which is insufficiently general for our purposes. What we
require is a definition for a degree-k interpolating function, using an arbitrary
input data set of size M , with M ≥ k + 1.

For a given data set of size M , an interpolation time t, and an associated
interval j, we apply the following algorithm to generate the interpolating poly-
nomial of degree k, where we will assume that k+1 (the number of data points
used to generate the polynomial) is an even number. A degree k polynomial
spans data at k intervals. To interpolate data at the middle interval, we use
(k − 1)/2 intervals before and after this middle- interval, so data at the set of
times:

{tj− k−1
2
...tj+ k

2
} (9.7)

The data at these times is used to generate an interpolating polynomial centered
on interval j using Eq. (9.5). That is, for each interval j, we define a separate
set of times as in (9.7), and a separate interpolating polynomial.

The reason that we use a set of times centered at interval j, is that higher-
order interpolating polynomials suffer from ’Runge’s phenomenon’, which can
cause strong oscillations between data points near the edges of the interpolating
polynomial. As a result, the interpolating polynomial can only be ’trusted’ in
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the center interval. This does not pose any problems, except at the edges of the
full data set. Particularly, for the first and last (k − 1)/2 intervals of the data
set, the Lagrange polynomial is prone to large errors, and its results should be
treated with extreme skepticism, and an alternative, lower-order, interpolating
method should be used in these intervals.
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Appendix A

Summary of Notation

In this document, we adhere to the following conventions:

• Vectors are written in bold, with a lower-case symbol: a

• Matrices/tensors are written in bold, with an upper-case symbol: A

• Cartesian position, velocity and acceleration vectors are denoted r, v and
a, respectively

For position and velocity vectors, we use the following:

• Position and velocity vectors of A, expressed in a frame with origin at B
and a frame with non-inertial orientation C, are written as r(C)

BA
and v(C)

BA

• Position and velocity vectors of A, expressed in a frame with origin at B
and an inertial orientation, are written as r

BA
and v

BA

For accelerations, we use the following:

• Accelerations acting on A, exerted by B, w.r.t. an origin C, expressed in
a frame with non-inertial orientation D are written as

(
a(D)

BA

)
C

• Accelerations acting on A, exerted by B, w.r.t. an origin C, expressed in
a frame with an inertial orientation, are written as (a

BA
)C

• Accelerations acting on A, exerted by B, w.r.t. an inertial origin, ex-
pressed in a frame with an inertial orientation, are written as a

BA

For rotation representations, we use the following:

• Rotation matrices from frame B to frame A are written as R(A/B)
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